npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

@vercel/ai-utils

v0.0.2

Published

AI Helpers

Downloads

324

Readme

Vercel AI Utils

Edge-ready utilities to accelerate working with AI in JavaScript and React.

Installation

pnpm install @vercel/ai-utils

Table of Contents

Usage

// app/api/generate/route.ts
import { Configuration, OpenAIApi } from 'openai-edge';
import { OpenAITextStream, StreamingTextResponse } from '@vercel/ai-utils';

const config = new Configuration({
  apiKey: process.env.OPENAI_API_KEY,
});
const openai = new OpenAIApi(config);

export const runtime = 'edge';

export async function POST() {
  const response = await openai.createChatCompletion({
    model: 'gpt-4',
    stream: true,
    messages: [{ role: 'user', content: 'What is love?' }],
  });
  const stream = OpenAITextStream(response);
  return new StreamingTextResponse(stream);
}

Tutorial

For this example, we'll stream a chat completion text from OpenAI's gpt-3.5-turbo and render it in Next.js. This tutorial assumes you have

Create a Next.js app

Create a Next.js application and install @vercel/ai-utils and openai-edge. We currently prefer the latter openai-edge library over the official OpenAI SDK because the official SDK uses axios which is not compatible with Vercel Edge Functions.

pnpx create-next-app my-ai-app
cd my-ai-app
pnpm install @vercel/ai-utils openai-edge

Add your OpenAI API Key to .env

Create a .env file and add an OpenAI API Key called

touch .env
OPENAI_API_KEY=xxxxxxxxx

Create a Route Handler

Create a Next.js Route Handler that uses the Edge Runtime that we'll use to generate a chat completion via OpenAI that we'll then stream back to our Next.js.

// ./app/api/generate/route.ts
import { Configuration, OpenAIApi } from 'openai-edge';
import { OpenAITextStream, StreamingTextResponse } from '@vercel/ai-utils';

// Create an OpenAI API client (that's edge friendly!)
const config = new Configuration({
  apiKey: process.env.OPENAI_API_KEY,
});
const openai = new OpenAIApi(config);

// IMPORTANT! Set the runtime to edge
export const runtime = 'edge';

export async function POST(req: Request) {
  // Extract the `prompt` from the body of the request
  const { prompt } = await req.json();

  // Ask OpenAI for a streaming chat completion given the prompt
  const response = await openai.createCompletion({
    model: 'gpt-3.5-turbo',
    stream: true,
    prompt,
  });
  // Convert the response into a React-friendly text-stream
  const stream = OpenAITextStream(response);
  // Respond with the stream
  return new StreamingTextResponse(stream);
}

Wire up the UI

Create a Client component with a form that we'll use to gather the prompt from the user and then stream back the completion from.

// ./app/form.ts
'use client';

import { useState } from 'react';
import { useCompletion } from '@vercel/ai-utils/react'; //@todo

export function Form() {
  const [value, setValue] = useState('');
  const { setPrompt, completion } = useCompletion('/api/generate');
  return (
    <div>
      <form
        onSubmit={(e) => {
          e.preventDefault();
          setPrompt(value);
          setValue('');
        }}
      >
        <textarea value={value} onChange={(e) => setValue(e.target.value)} />
        <button type="submit">Submit</button>
      </form>
      <div>{completion}</div>
    </div>
  );
}

API Reference

OpenAIStream(res: Response, cb: AIStreamCallbacks): ReadableStream

A transform that will extract the text from all chat and completion OpenAI models as returned as a ReadableStream.

// app/api/generate/route.ts
import { Configuration, OpenAIApi } from 'openai-edge';
import { OpenAITextStream, StreamingTextResponse } from '@vercel/ai-utils';

const config = new Configuration({
  apiKey: process.env.OPENAI_API_KEY,
});
const openai = new OpenAIApi(config);

export const runtime = 'edge';

export async function POST() {
  const response = await openai.createChatCompletion({
    model: 'gpt-4',
    stream: true,
    messages: [{ role: 'user', content: 'What is love?' }],
  });
  const stream = OpenAITextStream(response, {
    async onStart() {
      console.log('streamin yo')
    },
    async onToken(token) {
      console.log('token: ' + token)
    },
    async onCompletion(content) {
      console.log('full text: ' + )
      // await prisma.messages.create({ content }) or something
    }
  });
  return new StreamingTextResponse(stream);
}

HuggingFaceStream(iter: AsyncGenerator<any>, cb: AIStreamCallbacks): ReadableStream

A transform that will extract the text from most chat and completion HuggingFace models and return them as a ReadableStream.

// app/api/generate/route.ts
import { HfInference } from '@huggingface/inference';
import { HuggingFaceStream, StreamingTextResponse } from '@vercel/ai-utils';

export const runtime = 'edge';

const Hf = new HfInference(process.env.HUGGINGFACE_API_KEY);

export async function POST() {
  const response = await Hf.textGenerationStream({
    model: 'OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5',
    inputs: `<|prompter|>What's the Earth total population?<|endoftext|><|assistant|>`,
    parameters: {
      max_new_tokens: 200,
      // @ts-ignore
      typical_p: 0.2, // you'll need this for OpenAssistant
      repetition_penalty: 1,
      truncate: 1000,
      return_full_text: false,
    },
  });
  const stream = HuggingFaceStream(response);
  return new StreamingTextResponse(stream);
}

StreamingTextResponse(res: ReadableStream, init?: ResponseInit)

This is a tiny wrapper around Response class that makes returning ReadableStreams of text a one liner. Status is automatically set to 200, with 'Content-Type': 'text/plain; charset=utf-8' set as headers.

// app/api/generate/route.ts
import { OpenAITextStream, StreamingTextResponse } from '@vercel/ai-utils';

export const runtime = 'edge';

export async function POST() {
  const response = await openai.createChatCompletion({
    model: 'gpt-4',
    stream: true,
    messages: { role: 'user', content: 'What is love?' },
  });
  const stream = OpenAITextStream(response);
  return new StreamingTextResponse(stream, {
    'X-RATE-LIMIT': 'lol',
  }); // => new Response(stream, { status: 200, headers: { 'Content-Type': 'text/plain; charset=utf-8', 'X-RATE-LIMIT': 'lol' }})
}