@wiscale/velesdb-wasm
v0.6.0
Published
VelesDB for WebAssembly - Vector search in the browser
Readme
VelesDB WASM
WebAssembly build of VelesDB - vector search in the browser.
Features
- In-browser vector search - No server required
- SIMD optimized - Uses WASM SIMD128 for fast distance calculations
- Multiple metrics - Cosine, Euclidean, Dot Product, Hamming, Jaccard
- Memory optimization - SQ8 (4x) and Binary (32x) quantization
- Lightweight - Minimal bundle size
Installation
npm install @wiscale/velesdb-wasmUsage
import init, { VectorStore } from '@wiscale/velesdb-wasm';
async function main() {
// Initialize WASM module
await init();
// Create a vector store (768 dimensions, cosine similarity)
const store = new VectorStore(768, 'cosine');
// Insert vectors (use BigInt for IDs)
store.insert(1n, new Float32Array([0.1, 0.2, ...]));
store.insert(2n, new Float32Array([0.3, 0.4, ...]));
// Search for similar vectors
const query = new Float32Array([0.15, 0.25, ...]);
const results = store.search(query, 5); // Top 5 results
// Results: [[id, score], [id, score], ...]
console.log(results);
}
main();High-Performance Bulk Insert
For optimal performance when inserting many vectors:
// Pre-allocate capacity (avoids repeated memory allocations)
const store = VectorStore.with_capacity(768, 'cosine', 100000);
// Batch insert (much faster than individual inserts)
const batch = [
[1n, [0.1, 0.2, ...]],
[2n, [0.3, 0.4, ...]],
// ... more vectors
];
store.insert_batch(batch);
// Or reserve capacity on existing store
store.reserve(50000);API
VectorStore
class VectorStore {
// Create a new store
constructor(dimension: number, metric: 'cosine' | 'euclidean' | 'dot' | 'hamming' | 'jaccard');
// Create with storage mode (sq8/binary for memory optimization)
static new_with_mode(dimension: number, metric: string, mode: 'full' | 'sq8' | 'binary'): VectorStore;
// Create with pre-allocated capacity (performance optimization)
static with_capacity(dimension: number, metric: string, capacity: number): VectorStore;
// Properties
readonly len: number;
readonly is_empty: boolean;
readonly dimension: number;
readonly storage_mode: string; // "full", "sq8", or "binary"
// Methods
insert(id: bigint, vector: Float32Array): void;
insert_batch(batch: Array<[bigint, number[]]>): void; // Bulk insert
search(query: Float32Array, k: number): Array<[bigint, number]>;
remove(id: bigint): boolean;
clear(): void;
reserve(additional: number): void; // Pre-allocate memory
memory_usage(): number; // Accurate for each storage mode
}Distance Metrics
| Metric | Description | Best For |
|--------|-------------|----------|
| cosine | Cosine similarity | Text embeddings (BERT, GPT) |
| euclidean | L2 distance | Image features, spatial data |
| dot | Dot product | Pre-normalized vectors |
| hamming | Hamming distance | Binary vectors, fingerprints |
| jaccard | Jaccard similarity | Set similarity, sparse vectors |
Storage Modes (Memory Optimization)
Reduce memory usage with quantization:
// Full precision (default) - best recall
const full = new VectorStore(768, 'cosine');
// SQ8: 4x memory reduction (~1% recall loss)
const sq8 = VectorStore.new_with_mode(768, 'cosine', 'sq8');
// Binary: 32x memory reduction (~5-10% recall loss)
const binary = VectorStore.new_with_mode(768, 'hamming', 'binary');
console.log(sq8.storage_mode); // "sq8"| Mode | Memory (768D) | Compression | Use Case |
|------|---------------|-------------|----------|
| full | 3080 bytes | 1x | Default, max precision |
| sq8 | 784 bytes | 4x | Scale, RAM-constrained |
| binary | 104 bytes | 32x | Edge, IoT, mobile PWA |
IndexedDB Persistence
Save and restore your vector store for offline-first applications with built-in async methods:
import init, { VectorStore } from '@wiscale/velesdb-wasm';
async function main() {
await init();
// Create and populate a store
const store = new VectorStore(768, 'cosine');
store.insert(1n, new Float32Array(768).fill(0.1));
store.insert(2n, new Float32Array(768).fill(0.2));
// Save to IndexedDB (single async call)
await store.save('my-vectors-db');
console.log('Saved!', store.len, 'vectors');
// Later: Load from IndexedDB
const restored = await VectorStore.load('my-vectors-db');
console.log('Restored!', restored.len, 'vectors');
// Clean up: Delete database
await VectorStore.delete_database('my-vectors-db');
}
main();Persistence API
class VectorStore {
// Save to IndexedDB (async)
save(db_name: string): Promise<void>;
// Load from IndexedDB (async, static)
static load(db_name: string): Promise<VectorStore>;
// Delete IndexedDB database (async, static)
static delete_database(db_name: string): Promise<void>;
// Manual binary export/import (for localStorage, file download, etc.)
export_to_bytes(): Uint8Array;
static import_from_bytes(bytes: Uint8Array): VectorStore;
}Binary Format
| Field | Size | Description |
|-------|------|-------------|
| Magic | 4 bytes | "VELS" |
| Version | 1 byte | Format version (1) |
| Dimension | 4 bytes | Vector dimension (u32 LE) |
| Metric | 1 byte | 0=cosine, 1=euclidean, 2=dot |
| Count | 8 bytes | Number of vectors (u64 LE) |
| Vectors | variable | id (8B) + data (dim × 4B) each |
Performance
Ultra-fast serialization thanks to contiguous memory layout:
| Operation | 10k vectors (768D) | Throughput | |-----------|-------------------|------------| | Export | ~7 ms | 4479 MB/s | | Import | ~10 ms | 2943 MB/s |
Use Cases
- Browser-based RAG - 100% client-side semantic search
- Offline-first apps - Works without internet, persists to IndexedDB
- Privacy-preserving AI - Data never leaves the browser
- Electron/Tauri apps - Desktop AI without a server
- PWA applications - Full offline support with service workers
Building from Source
# Install wasm-pack
cargo install wasm-pack
# Build for browser
wasm-pack build --target web
# Build for Node.js
wasm-pack build --target nodejsPerformance
Typical latencies on modern browsers:
| Operation | 768D vectors | 10K vectors | |-----------|--------------|-------------| | Insert | ~1 µs | ~10 ms | | Search | ~50 µs | ~5 ms |
License
Elastic License 2.0 (ELv2)
See LICENSE for details.
