npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@yakit/didi

v8.0.2-beta.1

Published

Dependency Injection for JavaScript

Downloads

138

Readme

didi

CI

A tiny dependency injection / inversion of control container for JavaScript.

About

Dependency injection decouples component and component dependency instantiation from component behavior. That benefits your applications in the following ways:

  • explicit dependencies - all dependencies are passed in as constructor arguments, which makes it easy to understand how particular object depends on the rest of the environment
  • code reuse - such a component is much easier to reuse in other environments because it is not coupled to a specific implementation of its dependencies
  • much easier to test - component dependencies can be mocked trivially / overridden for testing

Following this pattern without a framework, you typically end up with some nasty main() method, where you instantiate all the objects and wire them together.

didi is a dependency injection container that saves you from this boilerplate. It makes wiring the application declarative rather than imperative. Each component declares its dependencies, and the framework does transitively resolve these dependencies.

Example

import { Injector } from 'didi';

function Car(engine) {
  this.start = function() {
    engine.start();
  };
}

function createPetrolEngine(power) {
  return {
    start: function() {
      console.log('Starting engine with ' + power + 'hp');
    }
  };
}

// a module is just a plain JavaScript object
// it is a recipe for the injector, how to instantiate stuff
const carModule = {
  // if an object asks for 'car', the injector will call new Car(...) to produce it
  'car': ['type', Car],
  // if an object asks for 'engine', the injector will call createPetrolEngine(...) to produce it
  'engine': ['factory', createPetrolEngine],
  // if an object asks for 'power', the injector will give it number 1184
  'power': ['value', 1184] // probably Bugatti Veyron
};

const injector = new Injector([
  carModule
]);

injector.invoke(function(car) {
  car.start();
});

For more examples, check out the tests.

You can also check out Karma or diagram-js, two libraries that heavily use dependency injection at its core.

Usage

On the Web

Use the minification save array notation to declare types or factories and their respective dependencies:

const carModule = {
  'car': ['type', [ 'engine', Car ]],
  ...
};

const {
  Injector
} = require('didi');

const injector = new Injector([
  carModule
])

injector.invoke(['car', function(car) {
  car.start();
}]);

Registering Stuff in the Module

Services, providers, value objects, config objects, etc... There are many names used in the world of DI and IOC. This project calls them components and there are 3 flavors; type, factory, value.

type(token, Constructor)

To produce the instance, Constructor will be called with new operator.

const module = {
  'engine': ['type', DieselEngine]
};

factory(token, factoryFn)

To produce the instance, factoryFn is called without any context. The factories return value will be used.

const module = {
  'engine': ['factory', createDieselEngine]
};

value(token, value)

Register the final value.

const module = {
  'power': ['value', 1184]
};

Function Annotations

The following are all valid ways of annotating function with injection arguments and are equivalent.

Option 1: Inferred

// inferred (only works if code not minified/obfuscated) unless its specified in line, 
//will inject the power config
function createEngine(power){
  ...use power.horses
}

//then in module config would specify the inline args in most cases because of minification
const carModule = {
  engine: ['factory', [ 'power', createEngine ]],
  power:  ['value', {horses: 400}]
};

Option 2: $inject annotated

// annotated
function createEngine(power) { ... }

createEngine.$inject = ['power'];

//then in module config array notation is not needed
const carModule = {
  engine: ['factory', createEngine ],
  power:  ['value', { horses: 400 }]
};

Option 3: Unpacking/Destructured Parameters

This works with minification(in vite) and does not require babel.

// destructured object parameter
function createEngine({ power }) { ... }

//then in module config can take the simple route as well since function params are parsed and $inject is automatically added
const carModule = {
  engine: ['factory', createEngine ],
  power:  ['value', { horses: 400 }]
};

Option 4: Babel Annotations/Comments

// @inject
function createEngine({powerService}){
  ...use powerService
}

...module

Annotations With Comments

In order for these to work with minification the #__PURE__ will need to be configured. There are various options that may work using these Babel annotations or plugins such as babel-plugin-inject-args, depending on choice of usage. Its left to the user to investigate (but please do submit PR with successful options that can be outlined here)

The injector looks up tokens based on argument names:

function Car(engine, license) {
  // will inject objects bound to 'engine' and 'license' tokens
}

You can also use comments:

function Car(/* engine */ e, /* x._weird */ x) {
  // will inject objects bound to 'engine' and 'x._weird' tokens
}

You can also the minification save array notation known from AngularJS:

const Car = [ 'engine', 'trunk', function(e, t) {
  // will inject objects bound to 'engine' and 'trunk'
}];

Sometimes it is helpful to inject only a specific property of some object:

function Engine(/* config.engine.power */ power) {
  // will inject 1184 (config.engine.power),
  // assuming there is no direct binding for 'config.engine.power' token
}


const engineModule = {
  'config': ['value', {engine: {power: 1184}, other : {}}]
};

//with object destructureing it can be done like this
function Engine({ 'config.engine.power': power }) { ... }

Destructured Function Parameters

Kitchen Sink example that will work with minification (tested with vite's esbuild minifier)

function makeEngine({ power: p, 'kinds.v8': kind, block: b = 'alum', fuel: f = 'diesel' }) {
  return { 
    getPower: () => p,
    powerDesc: `${p}hp`,
    kind,
    blockType: b,
    fuelType: f
  };
}

const module = ({
  engine: [ 'factory', makeEngine ],
  block: [ 'factory', ({ power }) => power > 300 ? 'steel' : 'alum' ]
  power: [ 'value', 400 ],
  kinds: [ 'value', { v8: '8 cylinder', v6: '6 cylinder' } ],
});

const injector = new Injector([ module ]);
const {getPower, powerDesc, kind, blockType, fuelType}  = injector.get('engine');

console.log(`${getPower()} , ${powerDesc} , ${kind} , ${blockType} , ${fuelType})
// output:  400 , 400hp , 8 cylinder , steel , diesel

📝 Note:
The injector tests are a great place to look for examples. You will find one that uses the 'type' and a Class with destructured object injection

Injecting the injector

In cases where you need the injector it can also be injected


//can use a function or lambda
const getEnginePower = ({injector}) => injector.get('engine').power

const carModule = {
  engine: ['factory', createEngine ],
  enginePower:  ['factory', getEnginePower ]
};

let power = injector.get('enginePower')

Component Initialization

The injector allows modules to declare initializers. These are components that shall be loaded or functions to be invoked on init, i.e. to trigger side-effects.

import { Injector } from 'didi';

function HifiModule(events) {
  events.on('toggleHifi', this.toggle.bind(this));

  this.toggle = function(mode) {
    console.log(`Toggled Hifi ${mode ? 'ON' : 'OFF'}`);
  };
}

const injector = new Injector([
  {
    __init__: [ 'hifiModule' ],
    hifiModule: [ 'type', HifiModule ]
  },
  ...
]);

// initializes all modules as defined
injector.init();

Credits

This library is built on top of the (now unmaintained) node-di library. didi is a maintained fork that adds support for ES6, the minification save array notation and other features.

Differences to node-di

  • supports array notation
  • supports ES2015
  • bundles type definitions
  • module initialization + module dependencies

License

MIT