agentic-debugger
v1.0.0
Published
MCP server for interactive debugging with code instrumentation. Live debug mode for AI coding assistants.
Maintainers
Readme
agentic-debugger
An MCP (Model Context Protocol) server that enables interactive debugging with code instrumentation for AI coding assistants. Inspired by Cursor's debug mode.
Works with any MCP-compatible AI coding tool:
- Claude Code
- Cursor
- Windsurf
- Cline
- GitHub Copilot
- Kiro
- Zed
- And more...
Features
- Live code instrumentation - Inject debug logging at specific lines
- Variable capture - Log variable values at runtime
- Multi-language support - JavaScript, TypeScript, and Python
- Browser support - CORS-enabled for browser JS debugging
- Clean removal - Region markers ensure instruments are fully removed
Installation
Using npx (recommended)
Add to your MCP configuration:
{
"mcpServers": {
"debug": {
"command": "npx",
"args": ["-y", "agentic-debugger"]
}
}
}Configuration file locations:
- Claude Code:
~/.mcp.json - Cursor:
.cursor/mcp.jsonin your project or~/.cursor/mcp.json - Other tools: Check your tool's MCP documentation
Global install
npm install -g agentic-debuggerThen configure:
{
"mcpServers": {
"debug": {
"command": "agentic-debugger"
}
}
}Available Tools
| Tool | Description |
|------|-------------|
| start_debug_session | Start HTTP server for log collection |
| stop_debug_session | Stop server and cleanup |
| add_instrument | Insert logging code at file:line |
| remove_instruments | Remove debug code from file(s) |
| list_instruments | Show all active instruments |
| read_debug_logs | Read captured log data |
| clear_debug_logs | Clear the log file |
How It Works
- Start session - Spawns a local HTTP server (default port 9876)
- Add instruments - Injects
fetch()calls that POST to the server - Reproduce bug - Run your code, instruments capture variable values
- Analyze logs - Read the captured data to identify issues
- Cleanup - Remove all instruments and stop the server
Debug Workflow Example
You: "Help me debug why the total is NaN"
AI Assistant:
1. Starts debug session
2. Reads your code to understand the logic
3. Adds instruments at suspicious locations
4. "Please run your code to reproduce the issue"
You: *runs code* "Done"
AI Assistant:
5. Reads debug logs
6. "I see `discount` is undefined at line 15..."
7. Removes instruments
8. Fixes the bug
9. Stops debug sessionInstrument Examples
JavaScript/TypeScript
// #region agentic-debug-abc123
fetch('http://localhost:9876/log', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
id: 'abc123',
location: 'cart.js:15',
timestamp: Date.now(),
data: { total, discount, items }
})
}).catch(() => {});
// #endregion agentic-debug-abc123Python
# region agentic-debug-abc123
try:
import urllib.request as __req, json as __json
__req.urlopen(__req.Request(
'http://localhost:9876/log',
data=__json.dumps({
'id': 'abc123',
'location': 'cart.py:15',
'timestamp': __import__('time').time(),
'data': {'total': total, 'discount': discount}
}).encode(),
headers={'Content-Type': 'application/json'}
))
except: pass
# endregion agentic-debug-abc123Supported Languages
| Language | Extensions |
|----------|------------|
| JavaScript | .js, .mjs, .cjs |
| TypeScript | .ts, .tsx |
| Python | .py |
Requirements
- Node.js >= 18.0.0
- An MCP-compatible AI coding assistant
License
MIT
