npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

aigroup-paper-mcp

v0.3.6

Published

A unified academic paper search and retrieval MCP server integrating 11+ academic platforms

Readme

AIGROUP Paper MCP Server

一个统一的学术论文搜索和检索MCP服务器,集成了12+个学术平台。

🔧 高级工具 (6个)

  • 智能参数完成 - 实时建议和上下文感知
  • 显示名称支持 - 更好的UI呈现
  • 结构化内容 - 原生支持结构化数据
  • 动态工具管理 - 运行时启用/禁用工具

📚 资源系统 (3个)

  • paper://{source}/{id} - 直接访问论文元数据
  • category://{source}/{category} - 浏览类别论文
  • search://{query} - 搜索结果作为资源

💬 提示模板 (3个)

  • literature_review - 文献综述助手
  • research_gap_analysis - 研究差距分析
  • paper_comparison - 论文比较分析

⚡ 性能优化

  • 通知去抖动 - 减少网络流量
  • 智能缓存 - 更快的响应速度
  • 并行搜索 - 多平台同时查询

🚀 快速开始

安装

作为CLI工具使用 (npx)

# 直接运行
npx aigroup-paper-mcp --help

# 搜索论文
npx aigroup-paper-mcp search "machine learning"

# 获取论文详情
npx aigroup-paper-mcp fetch "2301.00001" --source arxiv

# 列出平台类别
npx aigroup-paper-mcp categories

作为MCP服务器使用

npm install

开发模式

npm run dev

构建

npm run build

运行

npm start

📖 支持的平台

  • arXiv - 物理、数学、计算机科学等
  • OpenAlex - 综合学术数据库
  • PubMed Central (PMC) - 生物医学文献
  • Europe PMC - 欧洲生物医学数据库
  • bioRxiv - 生物学预印本
  • medRxiv - 医学预印本
  • CORE - 开放获取研究论文
  • Semantic Scholar - AI驱动的学术搜索
  • Crossref - DOI和元数据服务
  • PubMed - 生物医学文献数据库
  • Google Scholar - 学术搜索引擎
  • IACR - 密码学研究

🛠️ 工具列表

1. search_papers - 学术论文搜索

跨多个平台搜索论文,智能平台选择和查询优化。

参数:

  • query - 搜索关键词(必需,带智能纠错)
  • sources - 平台列表(可选,留空智能选择)
  • field - 搜索字段(可选,带参数完成)
  • categories - 类别过滤(可选)
  • sortBy - 排序字段(可选)
  • sortOrder - 排序顺序(可选)
  • limit - 结果数量(默认10)
  • offset - 分页偏移(默认0)

示例:

{
  "query": "transformer models",
  "field": "title",
  "limit": 20
}

2. fetch_paper - 获取论文详情

根据ID和平台获取论文完整元数据。

参数:

  • id - 论文ID(必需)
  • source - 平台源(必需)

示例:

{
  "id": "2301.00001",
  "source": "arxiv"
}

3. fetch_latest - 获取最新论文

从特定类别获取最新发表的论文。

参数:

  • source - 平台源(必需)
  • category - 类别名称(必需,带上下文感知完成)
  • limit - 结果数量(默认10)
  • useCache - 使用缓存(默认true)
  • summaryOnly - 仅摘要(大数据集自动启用)
  • enableEnhancement - 启用增强(默认true)

示例:

{
  "source": "arxiv",
  "category": "cs.AI",
  "limit": 20
}

4. list_categories - 列出平台类别

查看所有平台的可用类别。

参数:

  • source - 平台源(可选,留空列出所有)

5. advanced_search - 高级搜索

支持布尔运算符的复杂查询。

参数:

  • query - 搜索查询(支持AND/OR/NOT)
  • sources - 平台列表(可选)
  • field - 搜索字段(可选)
  • fuzzyMatch - 模糊匹配(默认false)
  • exactMatch - 精确匹配(默认false)
  • limit - 结果数量(默认10)

示例:

{
  "query": "(deep learning OR neural networks) AND NOT reinforcement",
  "fuzzyMatch": true
}

6. trend_analysis - 研究趋势分析

分析主题的时间趋势和发展。

参数:

  • topic - 研究主题(必需)
  • sources - 平台列表(可选)
  • period - 时间段(week/month/year/all)
  • granularity - 时间粒度(day/week/month)
  • limit - 每期论文数(默认100)

📦 资源使用

访问学术资源:

# 获取论文
paper://arxiv/2301.00001

# 浏览类别
category://arxiv/cs.AI

# 搜索结果
search://machine+learning

💡 提示模板

文献综述

literature_review({
  topic: "deep learning",
  timeframe: "past_year"
})

研究差距分析

research_gap_analysis({
  domain: "computer science",
  subtopic: "transformer models"
})

论文比较

paper_comparison({
  paperIds: "arxiv:2301.00001,arxiv:2302.00002",
  aspect: "methodology"
})

🔧 配置

MCP客户端配置

Claude Desktop、RooCode、通义灵码:

{
  "mcpServers": {
    "aigroup-paper-mcp": {
      "command": "npx",
      "args": ["aigroup-paper-mcp"]
    }
  }
}

环境变量: 创建 .env 文件:

LOG_LEVEL=info
CACHE_ENABLED=true
CACHE_TTL=3600
MAX_SEARCH_LIMIT=100

🤝 贡献

欢迎贡献!请查看 CONTRIBUTING.md

📄 许可证

MIT License - 详见 LICENSE