npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

aparavi-client

v1.0.9

Published

TypeScript client for Aparavi data processing and AI services

Readme

Aparavi Client TypeScript

A comprehensive TypeScript/JavaScript client library for the Aparavi data processing and AI platform. This package provides both a programmatic API and a command-line interface for managing Aparavi pipelines, uploading files, and processing data.

Features

  • 🚀 Pipeline Management: Start, monitor, and control Aparavi data processing pipelines
  • 📁 File Upload: Upload files with progress tracking and parallel processing
  • 🤖 AI Chat: Interact with Aparavi's AI capabilities
  • 📊 Real-time Monitoring: Monitor pipeline status and metrics in real-time
  • 🔄 Auto-reconnection: Automatic reconnection with persistence support
  • 📦 Dual Module Support: Works with both CommonJS and ES modules
  • 🎯 TypeScript Support: Full TypeScript definitions included
  • 🖥️ CLI Tool: Command-line interface for easy pipeline management

Installation

npm install aparavi-client

Or install globally for CLI access:

npm install -g aparavi-client

Quick Start

Using the CLI

The CLI automatically connects to the Aparavi cloud service at eaas.aparavi.com:443 by default.

# Start a pipeline (automatically uses eaas.aparavi.com)
aparavi start --pipeline ./my-pipeline.json --apikey YOUR_API_KEY

# Upload files
aparavi upload *.pdf --pipeline ./my-pipeline.json --apikey YOUR_API_KEY

# Monitor status
aparavi status --token TASK_TOKEN --apikey YOUR_API_KEY

# Use a different server
aparavi start --pipeline ./my-pipeline.json --apikey YOUR_API_KEY --host custom.server.com --port 443

Using the Library

import { AparaviClient } from 'aparavi-client';

const client = new AparaviClient({
  auth: 'your-api-key',
  uri: 'wss://eaas.aparavi.com:443'  // optional, this is the default
});

await client.connect();

// Start a pipeline
const result = await client.use({
  filepath: './my-pipeline.json'
});

// Send data
const response = await client.send(result.token, "Hello, Aparavi!");

await client.disconnect();

Configuration

Environment Variables

Create a .env file in your project:

APARAVI_APIKEY=your-api-key-here
APARAVI_URI=wss://eaas.aparavi.com:443
APARAVI_PIPELINE=./my-pipeline.json
APARAVI_TOKEN=existing-task-token

Client Configuration

const client = new AparaviClient({
  auth: 'your-api-key',                    // Required: API key
  uri: 'wss://eaas.aparavi.com:443',      // Optional: Server URI (default: eaas.aparavi.com:443)
  persist: true,                          // Optional: Auto-reconnect
  reconnectDelay: 1000,                   // Optional: Reconnect delay (ms)
  onEvent: (event) => console.log(event), // Optional: Event handler
  onConnected: () => console.log('Connected!'),
  onDisconnected: (reason) => console.log('Disconnected:', reason),
  env: {                                 // Optional: Custom environment
    APARAVI_PROJECT_ID: 'my-project'
  }
});

API Reference

Core Methods

Connection Management

// Connect to server
await client.connect();

// Check connection status
const isConnected = client.isConnected();

// Disconnect
await client.disconnect();

Pipeline Execution

// Start pipeline from file
const result = await client.use({
  filepath: './pipeline.json',
  threads: 4,
  token: 'custom-token',  // optional
  args: ['--verbose']     // optional
});

// Start pipeline from object
const result = await client.use({
  pipeline: {
    source: "source_1",
    components: [...]
  }
});

// Get pipeline status
const status = await client.getTaskStatus(result.token);

// Terminate pipeline
await client.terminate(result.token);

Data Operations

// Send string data
const response = await client.send(token, "Hello, World!");

// Send binary data
const buffer = new TextEncoder().encode("Binary data");
const response = await client.send(token, buffer, {
  filename: "data.txt",
  size: buffer.length
});

// Upload multiple files
const files = [
  { file: fileObject1, mimetype: 'application/pdf' },
  { file: fileObject2, objinfo: { custom: 'metadata' } }
];
const results = await client.sendFiles(files, token, 5); // max 5 concurrent

// Create data pipe for streaming
const pipe = await client.pipe(token, { filename: 'stream.txt' });
await pipe.open();
await pipe.write(new TextEncoder().encode("Chunk 1"));
await pipe.write(new TextEncoder().encode("Chunk 2"));
const result = await pipe.close();

AI Chat

import { Question } from 'aparavi-client-typescript';

const question = new Question({
  text: "What is the main topic of this document?",
  context: "Please analyze the uploaded content"
});

const response = await client.chat({
  token: pipelineToken,
  question: question
});

Event Handling

// Subscribe to events
await client.setEvents(token, ['apaevt_status_update', 'apaevt_status_upload']);

// Handle events
client.onEvent = (event) => {
  console.log('Event received:', event.event, event.body);
};

CLI Commands

Start Pipeline

aparavi start [options]

Options:
  --pipeline <file>     Pipeline configuration file
  --token <token>      Existing task token (optional)
  --threads <num>      Number of threads (default: 4)
  --args <args...>     Additional arguments
  --apikey <key>       API key
  --host <hostname>    Server hostname (default: eaas.aparavi.com)
  --port <port>        Server port (default: 443)

Upload Files

aparavi upload <files...> [options]

Arguments:
  <files...>           Files, wildcards, or directories to upload

Options:
  --pipeline <file>    Pipeline file to start new task
  --token <token>      Existing task token
  --max-concurrent <num>  Max concurrent uploads (default: 5)
  --threads <num>      Number of threads (default: 4)
  --apikey <key>       API key
  --host <hostname>    Server hostname (default: eaas.aparavi.com)
  --port <port>        Server port (default: 443)

Monitor Status

aparavi status [options]

Options:
  --token <token>      Task token to monitor
  --apikey <key>       API key
  --host <hostname>    Server hostname (default: eaas.aparavi.com)
  --port <port>        Server port (default: 443)

Stop Pipeline

aparavi stop [options]

Options:
  --token <token>      Task token to stop
  --apikey <key>       API key
  --host <hostname>    Server hostname (default: eaas.aparavi.com)
  --port <port>        Server port (default: 443)

Pipeline Configuration

Example Pipeline (LlamaParse)

{
  "pipeline": {
    "source": "source_1",
    "components": [
      {
        "id": "source_1",
        "provider": "webhook",
        "config": {
          "key": "webhook://*",
          "mode": "Source",
          "parameters": {
            "endpoint": "/pipe/process",
            "port": 5566
          }
        }
      },
      {
        "id": "llamaparse_1",
        "provider": "llamaparse",
        "config": {
          "llamaparse.api_key": "your-llamaparse-key",
          "result_type": "markdown"
        },
        "input": [
          {
            "lane": "tags",
            "from": "source_1"
          }
        ]
      },
      {
        "id": "response_1",
        "provider": "response",
        "input": [
          {
            "lane": "text",
            "from": "source_1"
          },
          {
            "lane": "table",
            "from": "llamaparse_1"
          }
        ]
      }
    ]
  }
}

Example Pipeline (OCR)

{
  "pipeline": {
    "source": "source_1",
    "components": [
      {
        "id": "source_1",
        "provider": "filesys",
        "config": {
          "include": [
            {
              "path": "/path/to/files",
              "ocr": true,
              "classify": true,
              "vectorize": false
            }
          ]
        }
      },
      {
        "id": "agetocr_1",
        "provider": "agetocr",
        "config": {
          "api_key": "your-agetocr-key"
        },
        "input": [
          {
            "lane": "tags",
            "from": "source_1"
          }
        ]
      }
    ]
  }
}

Complete Examples

Document Processing Workflow

import { AparaviClient } from 'aparavi-client';

async function processDocuments() {
  const client = new AparaviClient({
    auth: process.env.APARAVI_APIKEY,
    persist: true,
    onEvent: (event) => {
      if (event.event === 'apaevt_status_update') {
        console.log('Status:', event.body.state);
      }
    }
  });

  try {
    await client.connect();
    
    // Start pipeline
    const result = await client.use({
      filepath: './llamaparse-pipeline.json',
      threads: 4
    });
    
    console.log(`Pipeline started: ${result.token}`);
    
    // Upload files
    const files = [
      { file: document1, mimetype: 'application/pdf' },
      { file: document2, mimetype: 'application/pdf' }
    ];
    
    const uploadResults = await client.sendFiles(files, result.token, 5);
    console.log('Upload results:', uploadResults);
    
    // Monitor until complete
    let status;
    do {
      status = await client.getTaskStatus(result.token);
      console.log(`Progress: ${status.completedCount}/${status.totalCount}`);
      await new Promise(resolve => setTimeout(resolve, 2000));
    } while (status.state < 5);
    
    console.log('Processing complete!');
    
  } finally {
    await client.disconnect();
  }
}

processDocuments();

AI Chat Integration

import { AparaviClient, Question } from 'aparavi-client';

async function chatWithAI() {
  const client = new AparaviClient({
    auth: process.env.APARAVI_APIKEY
  });

  await client.connect();
  
  // Start a chat-enabled pipeline
  const result = await client.use({
    filepath: './chat-pipeline.json'
  });
  
  // Ask questions
  const question = new Question({
    text: "What are the key insights from the uploaded documents?",
    context: "Please provide a summary of the main findings"
  });
  
  const response = await client.chat({
    token: result.token,
    question: question
  });
  
  console.log('AI Response:', response);
  
  await client.disconnect();
}

Error Handling

try {
  const result = await client.use({ filepath: './pipeline.json' });
} catch (error) {
  if (error.message.includes('not found')) {
    console.error('Pipeline file not found');
  } else if (error.message.includes('authentication')) {
    console.error('Invalid API key');
  } else {
    console.error('Pipeline execution failed:', error.message);
  }
}

TypeScript Support

The package includes full TypeScript definitions:

import { AparaviClient, PipelineConfig, TASK_STATUS } from 'aparavi-client';

const client: AparaviClient = new AparaviClient({
  auth: 'your-api-key'
});

const status: TASK_STATUS = await client.getTaskStatus(token);

Browser Support

The client works in both Node.js and browser environments:

// Browser usage
import { AparaviClient } from 'aparavi-client';

const client = new AparaviClient({
  auth: 'your-api-key',
  uri: 'wss://eaas.aparavi.com:443'
});

// File upload in browser
const fileInput = document.getElementById('fileInput');
const files = Array.from(fileInput.files).map(file => ({ file }));

const results = await client.sendFiles(files, token);

Troubleshooting

Connection Defaults

The client automatically connects to the Aparavi cloud service:

  • Default Host: eaas.aparavi.com
  • Default Port: 443
  • Protocol: wss:// (secure WebSocket)

You don't need to specify these unless connecting to a custom server.

Common Issues

  1. Connection Failed (ws:// instead of wss://):

    • Ensure you're using the latest version: npm install -g aparavi-client@latest
    • Or install from local build: npm install -g ./dist/aparavi-client-1.0.4.tgz
  2. 403 Forbidden Error:

    • Your API key is invalid, expired, or lacks permissions
    • Get a new API key from your Aparavi account settings
  3. 301 Redirect Error:

    • You're using an old version of the package
    • Update to the latest version
  4. Pipeline Not Found:

    • Verify the pipeline file path and JSON format
    • Use absolute paths if relative paths don't work
  5. Upload Errors:

    • Ensure files are accessible and not too large
    • Check file permissions
  6. Authentication Errors:

    • Verify your API key is correct
    • Ensure the key has the necessary permissions

Debug Mode

Enable debug logging:

const client = new AparaviClient({
  auth: 'your-api-key',
  // Debug messages will be logged to console
});

License

MIT License - see LICENSE file for details.

Support

For support and documentation, visit:

Changelog

v1.0.4

  • Changed default server to eaas.aparavi.com:443
  • Fixed WebSocket protocol handling (wss:// for secure connections)
  • Improved URI construction and port handling
  • Updated package name to aparavi-client

v1.0.3

  • Port parsing improvements
  • Protocol detection fixes

v1.0.2

  • Initial public release with cloud defaults

v1.0.1

  • Initial release
  • Full TypeScript support
  • CLI interface
  • Pipeline management
  • File upload with progress tracking
  • AI chat integration
  • Real-time monitoring