arcananex-synapse
v0.1.1
Published
Agentic AI framework
Readme
Arcananex Synapse
Arcananex Synapse is a TypeScript library for building agentic AI systems and orchestrators. It provides abstractions for agent management, LLM (Large Language Model) integration, command execution, and AWS Bedrock connectivity, enabling rapid development of advanced AI-driven applications.
Features
- Agent Routing: Route user input to the correct agent using LLM-based task routing.
- Agent Abstraction: Define, register, and manage agents with custom logic (agent.ts).
- Command Pattern: Encapsulate operations as commands for flexible scheduling and execution (command.ts).
- Always-Run Agents: Register agents that execute on every input, in parallel.
- LLM Integration: Connect to AWS Bedrock and other LLM providers via adapters (adapters).
- Builders: Utilities for constructing memory and message objects for LLMs (builders).
- TypeScript-first: Strong typing and modern developer experience.
- Test Coverage: Comprehensive tests for core modules (
src/*.test.ts).
Getting Started
Prerequisites
- Node.js (v18+ recommended)
- TypeScript (4.x or later)
- AWS credentials (for Bedrock integration, if used)
Installation
npm install <path-to-arcananex-synapse>
# or if published
npm install arcananex-synapseConfiguration
Set environment variables in a .env file to configure the AI model and inference parameters:
AI_MODEL=amazon.nova-lite-v1:0
INFERENCE_CONFIG={"maxTokens":5000,"topP":0.9,"topK":20,"temperature":0.7}AI_MODEL: The model identifier (e.g., for Bedrock or other LLMs)INFERENCE_CONFIG: JSON string with inference parameters
Usage
1. Routing User Input to Agents
The framework uses an LLM prompt to route user input to the correct agent. The routing prompt is only used for this step.
import { agent, command } from 'arcananex-synapse';
const config = {
defaultMemory: [/* business logic memory for default agent */]
};
const main = new agent.Agent(llmInvoker, config); // llmInvoker: your LLM client instance
// Define agent command functions
const emailCommand = new command.Command('email');
emailCommand.setTask(async (task) => {
// Your email logic here
return { message: { content: `Email sent: ${task.command}` } };
});
main.registerAgent('email', emailCommand);
// Register always running agents
const analyticCommand = new command.Command('analytic');
analyticCommand.setTask(async (task) => {
// Analytics logic here
return { message: { content: 'Analytics processed.' } };
});
main.registerAlwaysRunAgent('analytic', analyticCommand);
// Process input (routing will occur automatically)
const result = await main.processInput([
{ role: 'user', content: 'Send onboarding email to new users' }
]);
console.log(result);2. Custom Agent Logic
You can implement custom agent logic by extending the Command or using your own handler:
const customCommand = new command.Command('custom');
customCommand.setTask(async (task) => {
// Custom logic here
return { message: { content: `Handled by custom agent: ${task.command}` } };
});
main.registerAgent('custom', customCommand);3. Chaining Agent Tasks
Chain multiple tasks using ChainCommand:
const chain = new command.ChainCommand<agent.AgentTask, unknown>()
.addTask(async (task) => {
// Task 1
return { step: 1 };
})
.addTask(async (task) => {
// Task 2
return { step: 2 };
});
main.registerAgent('chain', chain);4. Always-Run Agents
Always-run agents execute in parallel with the routed agent:
const loggerCommand = new command.Command('logger');
loggerCommand.setTask(async (task) => {
// Log every input
console.log('Logging:', task.originalInput);
return { message: { content: 'Logged.' } };
});
main.registerAlwaysRunAgent('logger', loggerCommand);5. Use with AWS Bedrock
Adapters and utilities for AWS Bedrock are provided. Set up your AWS credentials and use the provided Bedrock client and adapters:
import { bedrock } from 'arcananex-synapse/clients/bedrock';
const llmInvoker = new bedrock.BedrockLLMInvoker(/* config */);
const main = new agent.Agent(llmInvoker, config);Advanced Topics
- Command Pattern: Encapsulate operations as commands for scheduling and concurrency control.
- Adapters: Integrate with other LLM providers by implementing adapter interfaces.
- Builders: Use provided builders for constructing memory and message objects for LLMs.
- Testing: Run tests with
npm test. Test files are insrc/*.test.ts. - Extending: Add new agents, commands, or adapters by following the patterns in src.
Project Structure
esbuild.config.ts
jest.config.ts
LICENSE
package.json
README.md
tsconfig.json
src/
agent.ts
command.ts
index.ts
llm-invoker.ts
adapters/
bedrock-llm-client-adapter.ts
llm-response-adapter.ts
builders/
agent-builder.ts
memory-builder.ts
message-builder.ts
clients/
bedrock.ts
chatgpt.ts
utils/
aws-credential.ts
bedrock-response.ts
*.test.tsDevelopment & Contribution
- Clone the monorepo and install dependencies:
git clone <your-repo-url> cd arcananex-synapse npm install - Build the framework:
npm run build - Run tests:
npm test
Pull requests and issues are welcome! Please open an issue to discuss your ideas or report bugs.
License
MIT
