npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

chevrotain-rule-dsl

v1.0.2

Published

Chevrotain parser rule DSL

Readme

Chevrotain Rule DSL

Chevrotain Rule DSL

Example

rule(this, 'selectClause', [
    'select',
    '(id ,)+'
])

rule(this, 'selectClause', [
    'selectClause',
    'fromClause'
    '(whereClause)?'
])

Install

npm i -S chevrotain-rule-dsl

Usage

The built-in chevrotain API feels a bit "cumbersome":

$.RULE("qualifiedName", () => {
    $.CONSUME(Identifier)
    $.CONSUME(Dot)
    $.CONSUME2(Identifier)
})

This library lets you express the same with a neat wrapper DSL. Here are some examples using the DSL.

import { rule } from './chevrotain-rule-dsl'
import {
    allTokens,
    Comma,
    Identifier,
    // ...
} from './lexer'

// potentially filled with other/reusable rules (fx. from another Parser)
let myRegistry = {
  // ...
}

// alias mappings to tokens
const tokenMap = {
  ',': Comma,
  'else': Else,
  'id': Identifier
}

export class SelectParser extends Parser {
  registry = {} // to hold registered rules

  constructor(input) {
      super(input, allTokens)
      // must be called at the end of the constructor!
      Parser.performSelfAnalysis(this)
  }


  selectClause = rule(this, 'selectClause', [
      // auto-matically detect token and use consume:
      'Select', {
          // automatically detect REPEAT if min or sep
          min: 1,
          sep: ',', // using token alias ',' from tokenMap (option)
          def: 'id' // using token alias 'id' from tokenMap
      }
  ], {
    // options
    logging: true,
    registry: myRegistry,
    tokenMap // use alias mapping for this rule!
  })

  selectStatement = rule(this, 'selectStatement', [
      'selectClause fromClause', {
          option: 'whereClause'
      }
  ])

  fromClause = rule(this, 'fromClause', [{
      consume: From
  }, {
      consume: Identifier
  }])

  whereClause = rule(this, 'whereClause', ['Where', 'expression'])

  atomicExpression = rule(this, 'atomicExpression', {
      // automatically use alt for each OR rule
      or: [Integer, Identifier]
  })

  relationalOperator = rule(this, 'equalityOperator', 'Equal | NotEqual')
  relationalOperator = rule(this, 'relationalOperator', 'GreaterThan or LessThan')

  expression = rule(this, 'expression', [
      'atomicExpression',
      'relationalOperator',
      // auto-detect repeat!
      'atomicExpression'
  ])

More usage examples

Please see red-dragon test cases for more usage examples.

String rules

String rules allow for more concise rule expressions.

Option expression

Traditional Option rule API:

this.OPTION(() => {
  this.CONSUME(Identifier)
  this.CONSUME(Colon)
  this.CONSUME(Type)
})

Can now be expressed using ? in RegExp like pattern (...)?

(id : type)?

Repeat/Many expression

The following is a bit cumbersome

{
    // automatically detect REPEAT if min or sep
    min: 1,
    sep: ',', // using token alias ',' from tokenMap (option)
    def: 'id' // using token alias 'id' from tokenMap
}

This can now be expressed more simply in this common string format:

(id ,)+ or (id : type ,)*

Where the + or * is the cardinality, ie. 1 to many or 0 to many respectively. The last word before the right parenthesis ) is the separator. The remainder text after the left ( and before the separator is parsed as the rule definition def

{
    min: 0,
    sep: ',',
    def: 'id : type'
}

Which the parser would resolve to the following:

$.MANY_SEP({
    SEP: Comma,
    DEF: () => {
      $.Consume(Identifier)
      $.Consume(Colon)
      $.Consume(Type)
    }
})

Status and TODO

Currently the DSL is parsed in order to build a function that when executed is equivalent to using the standard chevrotain rule API. In turn we also generate textual code that mirrors using the standard API. This "hack" lets the chevrotain GAST parser walk the textual code via Regular expressions as usual.

Currently this PR is needed in order for the GAST walker to work with the textual code generated.

The key is how the implString is resolved, here by trying from the config code option if present before using the function code.

// only build the gast representation once.
if (!(this._productions.containsKey(name))) {
    let implString = (config && config.code) || implementation.toString()
    let gastProduction = buildTopProduction(implString, name, this.tokensMap)

You can also directly override the RULE method in your Parser as follows. Ideally the GAST production step should be entirely customizabl.

protected RULE<T>(name: string,
    implementation: (...implArgs: any[]) => T,
    // TODO: how to describe the optional return type of CSTNode? T|CstNode is not good because it is not backward
    // compatible, T|any is very general...
    config: IRuleConfig<T> = DEFAULT_RULE_CONFIG): (idxInCallingRule?: number, ...args: any[]) => T | any {

    let ruleErrors = validateRuleName(name)
    ruleErrors = ruleErrors.concat(validateRuleDoesNotAlreadyExist(name, this.definedRulesNames, this.className))
    this.definedRulesNames.push(name)
    this.definitionErrors.push.apply(this.definitionErrors, ruleErrors) // mutability for the win

    // only build the gast representation once.
    if (!(this._productions.containsKey(name))) {
        let implString = (config && config.code) || implementation.toString()
        let gastProduction = buildTopProduction(implString, name, this.tokensMap)
        this._productions.put(name, gastProduction)
    }
    else {
        let parserClassProductions = cache.getProductionsForClass(this.className)
        let cachedProduction = parserClassProductions.get(name)
        // in case of duplicate rules the cache will not be filled at this point.
        if (!isUndefined(cachedProduction)) {
            // filling up the _productions is always needed to inheriting grammars can access it (as an instance member)
            // otherwise they will be unaware of productions defined in super grammars.
            this._productions.put(name, cachedProduction)
        }
    }

    let ruleImplementation = this.defineRule(name, implementation, config)
    this[name] = ruleImplementation
    return ruleImplementation
}

Next step will be to (also) build the GAST directly (see below).

  • Modify the Parser config object (passed at construction) not each Rule config object to accept a custom function that given some params (rule name / rule impel func/ ...) will create the GAST structure
  • By default it will use the built in GAST Builder
  • Custom use cases can implement their own logic, but won't have to be forced to generate strings.

If the GastBuilder string -> GAST method is exposed. Then a single generic function on the parser level can perform the conversion from a string you generated to the GAST using some ID (ruleName).

CST

Concrete Syntax Tree Creation

Chevrotain has the capability to automatically create a concrete syntax tree (CST) during parsing. A CST is a simple structure which represents the entire parse tree. It contains information on every token parsed.

The main advantage of using the automatic CST creation is that it enables writing "pure" grammars. This means that the semantic actions are not embedded into the grammar implementation but are instead completely separated from it.

This separation of concerns makes the grammar easier to maintain and makes it easier to implement different capabilities on the grammar, for example: separate logic for compilation and for IDE support.

CST is enabled by setting the outputCst flag.

class MyParser extends chevrotain.Parser {
     constructor(input) {
        super(input, allTokens, {outputCst : true})
    }
}

Using:

$.RULE("qualifiedName", () => {
    $.CONSUME(Identifier)
    $.CONSUME(Dot)
    $.CONSUME2(Identifier)
})

input = "foo.bar"

output = {
  name: "qualifiedName",
  children: {
      Dot : ["."],
      Identifier : ["foo", "bar"]
  }
}

Note: Basic CST Visitor for easy CST to AST conversion is coming real soon in chevrotain (ETA: April 2017)

Transform CST to AST

CST to AST example

Contributing

Install dependency modules/packages

npm i

Install ava for testing

npm i -g ava

Add tests from red-dragon

ava

Compile/Build

  • Currently assumes VSC editor
  • Run TypeScript build task in .vscode
  • Alternatively use tsc directly in terminal

Run Tests

npm test or simply ava test

License

MIT Kristian Mandrup