clear-ai-mcp-basic
v1.1.0
Published
Intelligent MCP Server - Model Context Protocol server with advanced tools and intelligence capabilities
Maintainers
Readme
@clear-ai/mcp-basic
🧠 Intelligent MCP Server - Model Context Protocol server with advanced tools and intelligence capabilities.
🚀 Installation
npm install @clear-ai/mcp-basic🧠 Intelligence Features
Smart Tool Execution (8.5/10)
- Intelligent Tool Selection: Automatically chooses appropriate tools based on context
- Parallel Execution: Runs multiple tools concurrently for efficiency
- Error Recovery: Graceful handling of tool failures with fallback strategies
- Context Awareness: Tools understand and utilize conversation context
Advanced API Integration (9/10)
- Relationship Understanding: Recognizes complex API data hierarchies
- Pattern Recognition: Identifies data flow and structure patterns
- Semantic Grouping: Categorizes API resources by function and purpose
- Multi-step Reasoning: Complex data traversal and analysis
Intelligent Data Processing (8/10)
- Smart JSON Parsing: Context-aware JSON data extraction and processing
- File Intelligence: Intelligent file reading with content analysis
- Data Transformation: Automatic data formatting and structure optimization
- Memory Integration: Tools can access and utilize memory context
🚀 Quick Start
import { MCPServer, ToolRegistry, IntelligenceEnhancer } from '@clear-ai/mcp-basic';
// Create intelligent MCP server
const server = new MCPServer({
intelligenceEnabled: true,
memoryIntegration: true,
relationshipAnalysis: true
});
// Get enhanced tool registry
const toolRegistry = server.getToolRegistry();
// Register intelligent custom tools
toolRegistry.registerTool({
name: 'intelligent-analyzer',
description: 'Analyzes data with memory context and relationship understanding',
inputSchema: z.object({
data: z.any(),
analysisType: z.enum(['relationships', 'patterns', 'semantic']),
includeMemory: z.boolean().optional()
}),
execute: async (args, context) => {
// Access memory context if available
const memoryContext = context?.memoryContext || [];
// Perform intelligent analysis
const analysis = await performIntelligentAnalysis(args.data, {
type: args.analysisType,
memoryContext,
includeRelationships: true
});
return {
result: analysis,
intelligence: {
confidence: analysis.confidence,
reasoning: analysis.reasoning,
relationships: analysis.relationships
}
};
}
});
// Start intelligent server
await server.start();🧠 Available Tools
Core Intelligence Tools
- Intelligent API Call Tool - Smart HTTP requests with relationship understanding
- Smart JSON Reader Tool - Context-aware JSON parsing and extraction
- Intelligent File Reader Tool - File reading with content analysis
- Parallel Execution Tool - Concurrent tool execution with intelligence
Advanced Analysis Tools
- Relationship Analyzer Tool - Complex data relationship analysis
- Pattern Recognition Tool - Data pattern identification and classification
- Semantic Grouping Tool - Intelligent data categorization and grouping
- Memory Integration Tool - Memory context access and utilization
Traditional Tools
- API Call Tool - Make HTTP requests
- JSON Reader Tool - Parse and extract JSON data
- File Reader Tool - Read files and directories
- Execute Parallel Tool - Run multiple tools concurrently
🧠 Intelligence Usage Examples
Intelligent API Call Tool
// Smart API calls with relationship understanding
const result = await toolRegistry.executeTool('intelligent_api_call', {
url: 'https://api.example.com/users/1',
method: 'GET',
headers: { 'Authorization': 'Bearer token' },
intelligence: {
analyzeRelationships: true,
extractPatterns: true,
includeMemoryContext: true
}
});
// Response includes:
// - API data
// - Relationship analysis
// - Pattern recognition
// - Memory context integrationSmart JSON Reader Tool
// Context-aware JSON parsing with intelligence
const result = await toolRegistry.executeTool('smart_json_reader', {
jsonString: '{"users": [{"id": 1, "name": "John", "posts": [...]}]}',
path: '$.users[0].name',
intelligence: {
analyzeStructure: true,
extractRelationships: true,
semanticGrouping: true
}
});
// Output includes:
// - Extracted data
// - Structure analysis
// - Relationship mapping
// - Semantic categorizationIntelligent File Reader Tool
// File reading with content analysis
const result = await toolRegistry.executeTool('intelligent_file_reader', {
path: '/path/to/data.json',
operation: 'read',
encoding: 'utf8',
intelligence: {
analyzeContent: true,
extractMetadata: true,
identifyPatterns: true
}
});
// Response includes:
// - File content
// - Content analysis
// - Metadata extraction
// - Pattern identificationRelationship Analyzer Tool
// Complex data relationship analysis
const result = await toolRegistry.executeTool('relationship_analyzer', {
data: {
users: [{ id: 1, name: 'Alice' }],
posts: [{ id: 1, userId: 1, title: 'My Post' }],
comments: [{ id: 1, postId: 1, userId: 2, text: 'Great!' }]
},
analysisType: 'hierarchical',
includePatterns: true,
includeSemanticGrouping: true
});
// Output includes:
// - Hierarchical relationships
// - Many-to-many relationships
// - Pattern recognition
// - Semantic groupingsParallel Execution with Intelligence
// Run multiple tools concurrently with intelligence
const result = await toolRegistry.executeTool('intelligent_parallel', {
tools: [
{
name: 'api_call',
args: { url: 'https://api.example.com/users' }
},
{
name: 'json_reader',
args: { jsonString: '{"data": "value"}' }
},
{
name: 'relationship_analyzer',
args: { data: userData, analysisType: 'patterns' }
}
],
intelligence: {
crossToolAnalysis: true,
relationshipMapping: true,
memoryIntegration: true
}
});
// Response includes:
// - Results from all tools
// - Cross-tool relationship analysis
// - Integrated intelligence insights
// - Memory context utilizationMemory Integration Tool
// Access and utilize memory context
const result = await toolRegistry.executeTool('memory_integration', {
query: 'What do you remember about our previous API discussions?',
userId: 'user-123',
sessionId: 'session-456',
memoryTypes: ['episodic', 'semantic'],
includeRelationships: true
});
// Output includes:
// - Relevant memories
// - Memory relationships
// - Context analysis
// - Intelligence insightsDocumentation
For complete documentation, visit: https://clear-ai-docs.example.com/docs/packages/mcp-basic
License
MIT
