cognee-vercel-ai-sdk
v0.0.2
Published
Vercel AI SDK wrapper with Cognee memory integration for persistent context and conversation storage
Downloads
187
Maintainers
Readme
Cognee Vercel AI SDK
Add persistent memory and knowledge graph capabilities to any Vercel AI SDK language model. Works with OpenAI, Anthropic, and all other supported providers.
Features
- Automatic Memory Storage: Every conversation is stored and processed into a knowledge graph
- Context-Aware Responses: Retrieve relevant context from past conversations automatically
- Universal Compatibility: Works with any Vercel AI SDK language model
- Cloud & Self-Hosted: Seamlessly supports both Cognee Cloud and local instances
- Version Detection: Automatically detects and adapts to your Cognee API version
- Direct SDK Access: Use Cognee's knowledge graph features independently from AI models
- Type-Safe: Full TypeScript support with OpenAPI-generated types
Installation
npm install cognee-vercel-ai-sdk
# or
yarn add cognee-vercel-ai-sdkQuick Start
1. AI Model Wrapper (Automatic Memory)
Wrap any language model to automatically store conversations and enhance responses with memory:
import { openai } from '@ai-sdk/openai';
import { wrapWithCognee } from 'cognee-vercel-ai-sdk';
import { generateText } from 'ai';
// Wrap your model
const model = wrapWithCognee(openai('gpt-4'), {
apiKey: process.env.COGNEE_API_KEY,
baseURL: 'http://localhost:8000', // optional, defaults to Cognee Cloud
storeInteractions: true, // store conversations
retrieveMemory: true, // enhance prompts with past context
dataset_name: 'my_conversations', // organize by dataset
});
// Use normally with Vercel AI SDK
const { text } = await generateText({
model,
prompt: 'What is machine learning?',
});
// Later conversations automatically have context
const { text: followUp } = await generateText({
model,
prompt: 'Can you give me an example?', // References previous conversation
});2. Direct SDK Usage
Use Cognee's knowledge graph features independently:
import { createCogneeClient } from 'cognee-vercel-ai-sdk';
// Create client (auto-detects cloud vs local)
const cognee = await createCogneeClient({
apiKey: process.env.COGNEE_API_KEY,
baseURL: 'http://localhost:8000', // optional
});
// Add data
await cognee.add({
payload: [
'Machine learning is a subset of AI.',
'Neural networks are inspired by the human brain.',
],
datasetName: 'ai_knowledge',
});
// Process into knowledge graph
await cognee.cognify({
datasets: ['ai_knowledge'],
});
// Search the knowledge graph
const results = await cognee.search({
query: 'How does machine learning relate to neural networks?',
datasets: ['ai_knowledge'],
searchType: 'GRAPH_COMPLETION',
});Configuration
Environment Variables
# For Cognee Cloud
COGNEE_API_KEY=your-cloud-api-key
# For local Cognee instance
COGNEE_API_KEY=optional-local-key
COGNEE_BASE_URL=http://localhost:8000Wrapper Options
interface CogneeWrapperOptions {
apiKey: string; // Cognee API key
baseURL?: string; // API endpoint (default: Cognee Cloud)
storeInteractions?: boolean; // Store conversations (default: true)
retrieveMemory?: boolean; // Enhance with memory (default: false)
dataset_name?: string; // Dataset name (default: 'vercel_conversations')
headers?: Record<string, string>; // Custom headers
}Architecture
The SDK automatically detects your Cognee environment:
- Cloud: Connects to
api.cognee.aiusing cloud-specific APIs - Local: Detects version from
/healthendpoint and uses appropriate local APIs - Versioned: Each Cognee version (v0.4.0, v0.5.0, etc.) has dedicated implementations
Both environments share the same unified interface for seamless compatibility.
API Reference
CogneeSDK Interface
All implementations (cloud and local) share this common interface:
interface CogneeSDK {
// Add data to a dataset
add(args: {
payload: string[];
datasetName?: string;
datasetId?: string;
nodeSet?: string[];
}): Promise<any>;
// Process datasets into knowledge graph
cognify(args: {
datasets?: string[];
datasetIds?: string[];
runInBackground?: boolean;
customPrompt?: string;
temporalCognify?: boolean;
}): Promise<any>;
// Search the knowledge graph
search(args: {
query: string;
searchType?: 'GRAPH_COMPLETION' | 'CHUNKS' | 'SUMMARIES' | /* ... */;
datasets?: string[];
datasetIds?: string[];
topK?: number;
systemPrompt?: string;
onlyContext?: boolean;
}): Promise<any>;
}Examples
See the examples/ directory for complete working examples:
openai_example.ts- Basic OpenAI integration with memoryanthropic_example.ts- Claude integrationmemory_retrieval_example.ts- Store and retrieve from knowledge graphlocal_cognee_example.ts- Using local Cognee instance
Requirements
- Node.js 18+
- Vercel AI SDK 3.0+
- Cognee Cloud account or local Cognee instance
How It Works
- Storage: Conversations are stored as text in Cognee datasets
- Processing:
cognify()transforms text into a knowledge graph with entities and relationships - Retrieval: When
retrieveMemoryis enabled, relevant context is automatically retrieved - Enhancement: Retrieved context is injected into prompts as system messages
- Response: The LLM generates responses informed by your knowledge graph
Local Development
Running against a local Cognee instance:
const model = wrapWithCognee(openai('gpt-4'), {
apiKey: '', // Optional for local
baseURL: 'http://localhost:8000',
});The SDK automatically detects the version and uses the appropriate API format.
Contributing
Contributions are welcome! This SDK is designed to be extensible:
- Add new Cognee versions by creating folders like
src/cognee_sdk/v0.5.0/ - Each version implements the common
CogneeSDKinterface - Version detection happens automatically via
/healthendpoint
License
MIT
