npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

competitive-math-toolkit

v1.0.4

Published

A collection of math utilities optimized for competitive programming.

Downloads

25

Readme

Competitive Math Toolkit 🚀

A high-performance math library optimized for competitive programming.

npm
license
stars

📌 Features

✔️ Number Theory: GCD, LCM, Modular Exponentiation, Modular Inverse, Prime Sieve, Chinese Remainder Theorem
✔️ Combinatorics: Factorial, nCr (Combinations), Catalan Numbers
✔️ Matrix Exponentiation: Fast Fibonacci, Solving Recurrence Relations
✔️ Graph Math: Eulerian Path Detection
✔️ Optimized for O(log n) and O(1) operations wherever possible


📦 Installation

npm install competitive-math-toolkit

🔰 Usage

1️⃣ Number Theory

const mathToolkit = require("competitive-math-toolkit");

console.log(mathToolkit.gcd(36, 60)); // Output: 12
console.log(mathToolkit.lcm(12, 15)); // Output: 60
console.log(mathToolkit.modExp(2, 10, 1000000007)); // Output: 1024
console.log(mathToolkit.sieve(50)); // Output: [2, 3, 5, 7, 11, 13, ...]
console.log(mathToolkit.isDivisible(10, 5)); // Output: "Yes"
console.log(mathToolkit.findDivisors(10)); // Output: [1, 2, 5, 10]
console.log(mathToolkit.primeFactorization(60)); // Output: [2, 2, 3, 5]
console.log(mathToolkit.isPrime(13)); // Output: true
console.log(mathToolkit.modAdd(10, 15, 7)); // Output: 4
console.log(mathToolkit.modSubtract(10, 15, 7)); // Output: 2
console.log(mathToolkit.modMultiply(10, 15, 7)); // Output: 1
console.log(mathToolkit.modInverse(3, 11)); // Output: 4
console.log(mathToolkit.modDivide(10, 5, 7)); // Output: 2
console.log(mathToolkit.nthRoot(3, 27)); // Output: 3
console.log(mathToolkit.isPerfectSquare(25)); // Output: true
console.log(mathToolkit.isPerfectCube(27)); // Output: true
console.log(mathToolkit.binaryExponentiation(2, 10, 1000000007)); // Output: 1024
console.log(mathToolkit.isCoprime(14, 25)); // Output: true
console.log(mathToolkit.sumOfDivisors(12)); // Output: 28
console.log(mathToolkit.countPrimes(50)); // Output: 15

2️⃣ Combinatorics

console.log(mathToolkit.factorial(5)); // Output: 120
console.log(mathToolkit.nCr(5, 2)); // Output: 10
console.log(mathToolkit.nPr(5, 2)); // Output: 20

3️⃣ Matrix Exponentiation

console.log(mathToolkit.nthFibonacci(10)); // Output: 55

4️⃣ Graph Math

const graph = {
  A: ["B", "C"],
  B: ["A", "D"],
  C: ["A", "D"],
  D: ["B", "C"],
};
console.log(mathToolkit.countEulerianPaths(graph)); // Output: true

5️⃣ Chinese Remainder Theorem

const num = [3, 5, 7];
const rem = [2, 3, 2];

console.log(mathToolkit.chineseRemainderTheorem(num, rem)); // Output: 23

6️⃣ Bitwise Operations

Efficient bitwise operations and conversions.

const mathToolkit = require("competitive-math-toolkit");

console.log(mathToolkit.and(5, 3)); // Output: 1
console.log(mathToolkit.or(5, 3)); // Output: 7
console.log(mathToolkit.xor(5, 3)); // Output: 6
console.log(mathToolkit.not(5)); // Output: -6
console.log(mathToolkit.leftShift(5, 1)); // Output: 10
console.log(mathToolkit.rightShift(5, 1)); // Output: 2

console.log(mathToolkit.countSetBits(9)); // Output: 2
console.log(mathToolkit.isPowerOfTwo(8)); // Output: true

// Bitwise Manipulation
console.log(mathToolkit.setBit(5, 1)); // Output: 7
console.log(mathToolkit.clearBit(7, 1)); // Output: 5
console.log(mathToolkit.toggleBit(5, 0)); // Output: 4
console.log(mathToolkit.checkBit(5, 2)); // Output: true

// Conversions
console.log(mathToolkit.decimalToBinary(10)); // Output: "1010"
console.log(mathToolkit.binaryToDecimal("1010")); // Output: 10
console.log(mathToolkit.decimalToHex(255)); // Output: "FF"
console.log(mathToolkit.hexToDecimal("FF")); // Output: 255
console.log(mathToolkit.decimalToOctal(64)); // Output: "100"
console.log(mathToolkit.octalToDecimal("100")); // Output: 64
console.log(mathToolkit.binaryToHex("1111")); // Output: "F"
console.log(mathToolkit.hexToBinary("F")); // Output: "1111"

📜 API Reference

| Function | Description | | ------------------------------------ | ------------------------------------------------------------------------------- | | gcd(a, b) | Returns the Greatest Common Divisor (GCD) of two numbers | | lcm(a, b) | Returns the Least Common Multiple (LCM) of two numbers | | modExp(base, exp, mod) | Fast exponentiation (base^exp % mod) | | modInverse(a, mod) | Finds modular inverse using Extended Euclidean Algorithm | | sieve(n) | Returns all prime numbers up to n using Sieve of Eratosthenes | | isDivisible(number, divisor) | Checks if number is divisible by divisor. Returns "Yes" or "No". | | findDivisors(number) | Returns an array of all divisors of number. | | primeFactorization(number) | Returns an array of prime factors of number. | | isPrime(number) | Checks if number is prime. Returns true or false. | | factorial(n, mod) | Returns factorial of n modulo mod | | nCr(n, r, mod) | Returns nCr (binomial coefficient) modulo mod | | nthFibonacci(n, mod) | Returns nth Fibonacci number using Matrix Exponentiation | | modAdd(a, b, m) | Computes ( (a + b) \mod m ) | | modSubtract(a, b, m) | Computes ( (a - b) \mod m ) | | modMultiply(a, b, m) | Computes ( (a \times b) \mod m ) | | modInverse(a, m) | Computes the modular inverse of ( a ) under modulo ( m ) | | modDivide(a, b, m) | Computes ( (a / b) \mod m ) using modular inverse | | nthRoot(n, a) | Computes the ( n )-th root of ( a ) | | isPerfectSquare(n) | Checks if ( n ) is a perfect square | | isPerfectCube(n) | Checks if ( n ) is a perfect cube | | binaryExponentiation(base, exp, m) | Computes ( \text{base}^{\text{exp}} \mod m ) using fast exponentiation | | nPr(n, r) | Computes permutations ( P(n, r) ) | | isCoprime(a, b) | Checks if two numbers are coprime (i.e., their GCD is 1) | | sumOfDivisors(n) | Computes the sum of all divisors of ( n ) | | countPrimes(n) | Counts the number of prime numbers up to ( n ) | | countEulerianPaths(graph) | Checks if a given graph has an Eulerian path | | chineseRemainderTheorem(num, rem) | Solves a system of simultaneous congruences using the Chinese Remainder Theorem | | and(a, b) | Computes the bitwise AND of two numbers | | or(a, b) | Computes the bitwise OR of two numbers | | xor(a, b) | Computes the bitwise XOR of two numbers | | not(a) | Computes the bitwise NOT (1's complement) of a number | | leftShift(a, n) | Shifts bits of a to the left by n positions | | rightShift(a, n) | Shifts bits of a to the right by n positions (signed shift) | | countSetBits(num) | Counts the number of 1s in the binary representation of a number | | isPowerOfTwo(num) | Checks if a number is a power of two | | setBit(num, pos) | Sets the bit at position pos in num to 1 | | clearBit(num, pos) | Clears the bit at position pos in num (sets to 0) | | toggleBit(num, pos) | Toggles the bit at position pos in num | | checkBit(num, pos) | Checks if the bit at position pos is 1 | | decimalToBinary(num) | Converts a decimal number to binary (as a string) | | binaryToDecimal(str) | Converts a binary string to decimal | | decimalToHex(num) | Converts a decimal number to hexadecimal (as a string) | | hexToDecimal(str) | Converts a hexadecimal string to decimal | | decimalToOctal(num) | Converts a decimal number to octal (as a string) | | octalToDecimal(str) | Converts an octal string to decimal | | binaryToHex(str) | Converts a binary string to hexadecimal | | hexToBinary(str) | Converts a hexadecimal string to binary |


⚡ Performance

  • Most operations are O(log N) for efficiency.
  • Matrix exponentiation speeds up Fibonacci and recurrence relations.
  • Uses modular arithmetic for safe computation.

🛠️ Running Tests

You can run unit tests using:

npm test

📝 License

This project is licensed under the MIT License.


🌟 Contributing

Feel free to contribute, report issues, or request new features!

  1. Fork the repository.
  2. Create a new branch: git checkout -b feature-new-feature
  3. Commit changes: git commit -m "Added a new feature"
  4. Push and submit a PR!

🚀 Future Enhancements

  • ✅ Add big integer support
  • ✅ Implement fast polynomial calculations
  • ✅ Provide TypeScript support

👨‍💻 Author

Developed by Apurva Kumar 🚀
GitHub | LinkedIn