npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

cost-katana

v2.1.7

Published

The simplest way to use AI with automatic cost tracking and optimization. Native SDK support for OpenAI and Google Gemini with automatic AWS Bedrock fallback.

Downloads

257

Readme

Cost Katana 🥷

Cut your AI costs in half. Without cutting corners.

Cost Katana is a drop-in SDK that wraps your AI calls with automatic cost tracking, smart caching, and optimization—all in one line of code.


🚀 Get Started in 60 Seconds

Step 1: Install

npm install cost-katana

Step 2: Make Your First AI Call

import { ai, OPENAI } from 'cost-katana';

const response = await ai(OPENAI.GPT_4, 'Explain quantum computing in one sentence');

console.log(response.text);   // "Quantum computing uses qubits to perform..."
console.log(response.cost);   // 0.0012
console.log(response.tokens); // 47

That's it. No configuration files. No complex setup. Just results.


🌍 Provider-Independent by Design

Cost Katana is completely provider-agnostic. Never lock yourself into a single vendor.

✅ Use Capability-Based Routing

import { ai, ModelCapability } from 'cost-katana';

// Automatically selects best model for each task
const code = await ai(ModelCapability.CODE_GENERATION, 'Write a React component');
const chat = await ai(ModelCapability.CONVERSATION, 'Hello!');
const vision = await ai(ModelCapability.VISION, 'Describe this image', { image });

✅ Optimize by Performance Characteristics

import { ai } from 'cost-katana';

// Fastest model available
const fast = await ai({ speed: 'fastest' }, prompt);

// Cheapest model available
const cheap = await ai({ cost: 'cheapest' }, prompt);

// Best quality model
const best = await ai({ quality: 'best' }, prompt);

// Balanced approach
const balanced = await ai({ speed: 'fast', cost: 'cheap' }, prompt);

Benefits:

  • 🔄 Automatic Failover - Seamlessly switch providers if one goes down
  • 💰 Cost Optimization - Routes to the cheapest provider automatically
  • 🚀 Future-Proof - New providers added without code changes
  • 🔓 Zero Lock-In - Switch providers anytime, no refactoring needed

Read the full Provider-Agnostic Guide →


📖 Tutorial: Build a Cost-Aware Chatbot

Let's build something real. In this tutorial, you'll create a chatbot that:

  • ✅ Tracks every dollar spent
  • ✅ Caches repeated questions (saving 100% on duplicates)
  • ✅ Optimizes long responses (40-75% savings)

Part 1: Basic Chat Session

import { chat, OPENAI } from 'cost-katana';

// Create a persistent chat session
const session = chat(OPENAI.GPT_4);

// Send messages and track costs
await session.send('Hello! What can you help me with?');
await session.send('Tell me a programming joke');
await session.send('Now explain it');

// See exactly what you spent
console.log(`💰 Total cost: $${session.totalCost.toFixed(4)}`);
console.log(`📊 Messages: ${session.messages.length}`);
console.log(`🎯 Tokens used: ${session.totalTokens}`);

Part 2: Add Smart Caching

Cache identical questions to avoid paying twice:

import { ai, OPENAI } from 'cost-katana';

// First call - hits the API
const response1 = await ai(OPENAI.GPT_4, 'What is 2+2?', { cache: true });
console.log(`Cached: ${response1.cached}`);  // false
console.log(`Cost: $${response1.cost}`);     // $0.0008

// Second call - served from cache (FREE!)
const response2 = await ai(OPENAI.GPT_4, 'What is 2+2?', { cache: true });
console.log(`Cached: ${response2.cached}`);  // true
console.log(`Cost: $${response2.cost}`);     // $0.0000 🎉

Part 3: Enable Cortex Optimization

For long-form content, Cortex compresses prompts intelligently:

import { ai, OPENAI } from 'cost-katana';

const response = await ai(
  OPENAI.GPT_4,
  'Write a comprehensive guide to machine learning for beginners',
  { 
    cortex: true,      // Enable 40-75% cost reduction
    maxTokens: 2000 
  }
);

console.log(`Optimized: ${response.optimized}`);
console.log(`Saved: $${response.savedAmount}`);

Part 4: Compare Models Side-by-Side

Find the best price-to-quality ratio for your use case:

import { ai, OPENAI, ANTHROPIC, GOOGLE } from 'cost-katana';

const prompt = 'Summarize the theory of relativity in 50 words';

const models = [
  { name: 'GPT-4', id: OPENAI.GPT_4 },
  { name: 'Claude 3.5 Sonnet', id: ANTHROPIC.CLAUDE_3_5_SONNET_20241022 },
  { name: 'Gemini 2.5 Pro', id: GOOGLE.GEMINI_2_5_PRO },
  { name: 'GPT-3.5 Turbo', id: OPENAI.GPT_3_5_TURBO }
];

console.log('📊 Model Cost Comparison\n');

for (const model of models) {
  const response = await ai(model.id, prompt);
  console.log(`${model.name.padEnd(20)} $${response.cost.toFixed(6)}`);
}

Sample Output:

📊 Model Cost Comparison

GPT-4                $0.001200
Claude 3.5 Sonnet    $0.000900
Gemini 2.5 Pro       $0.000150
GPT-3.5 Turbo        $0.000080

🎯 Type-Safe Model Selection

Stop guessing model names. Get autocomplete and catch typos at compile time:

import { OPENAI, ANTHROPIC, GOOGLE, AWS_BEDROCK, XAI, DEEPSEEK } from 'cost-katana';

// OpenAI
OPENAI.GPT_5
OPENAI.GPT_4
OPENAI.GPT_4O
OPENAI.GPT_3_5_TURBO
OPENAI.O1
OPENAI.O3

// Anthropic
ANTHROPIC.CLAUDE_SONNET_4_5
ANTHROPIC.CLAUDE_3_5_SONNET_20241022
ANTHROPIC.CLAUDE_3_5_HAIKU_20241022

// Google
GOOGLE.GEMINI_2_5_PRO
GOOGLE.GEMINI_2_5_FLASH
GOOGLE.GEMINI_1_5_PRO

// AWS Bedrock
AWS_BEDROCK.NOVA_PRO
AWS_BEDROCK.NOVA_LITE
AWS_BEDROCK.CLAUDE_SONNET_4_5

// Others
XAI.GROK_2_1212
DEEPSEEK.DEEPSEEK_CHAT

Why constants over strings? | Feature | String 'gpt-4' | Constant OPENAI.GPT_4 | |---------|------------------|-------------------------| | Autocomplete | ❌ | ✅ | | Typo protection | ❌ | ✅ | | Refactor safely | ❌ | ✅ | | Self-documenting | ❌ | ✅ |


⚙️ Configuration

Environment Variables

# Recommended: Use Cost Katana API key for all features
COST_KATANA_API_KEY=dak_your_key_here

# Or use provider keys directly
OPENAI_API_KEY=sk-...
ANTHROPIC_API_KEY=sk-ant-...
GEMINI_API_KEY=...

# For AWS Bedrock
AWS_ACCESS_KEY_ID=...
AWS_SECRET_ACCESS_KEY=...
AWS_REGION=us-east-1

Programmatic Configuration

import { configure } from 'cost-katana';

await configure({
  apiKey: 'dak_your_key',
  cortex: true,     // 40-75% cost savings
  cache: true,      // Smart caching
  firewall: true    // Block prompt injections
});

Request Options

const response = await ai(OPENAI.GPT_4, 'Your prompt', {
  temperature: 0.7,                        // Creativity (0-2)
  maxTokens: 500,                          // Response limit
  systemMessage: 'You are a helpful AI',   // System prompt
  cache: true,                             // Enable caching
  cortex: true,                            // Enable optimization
  retry: true                              // Auto-retry on failures
});

🔌 Framework Integration

Next.js App Router

// app/api/chat/route.ts
import { ai, OPENAI } from 'cost-katana';

export async function POST(request: Request) {
  const { prompt } = await request.json();
  const response = await ai(OPENAI.GPT_4, prompt);
  return Response.json(response);
}

Express.js

import express from 'express';
import { ai, OPENAI } from 'cost-katana';

const app = express();
app.use(express.json());

app.post('/api/chat', async (req, res) => {
  const response = await ai(OPENAI.GPT_4, req.body.prompt);
  res.json(response);
});

app.listen(3000);

Fastify

import fastify from 'fastify';
import { ai, OPENAI } from 'cost-katana';

const app = fastify();

app.post('/api/chat', async (request) => {
  const { prompt } = request.body as { prompt: string };
  return await ai(OPENAI.GPT_4, prompt);
});

app.listen({ port: 3000 });

NestJS

import { Controller, Post, Body } from '@nestjs/common';
import { ai, OPENAI } from 'cost-katana';

@Controller('api')
export class ChatController {
  @Post('chat')
  async chat(@Body() body: { prompt: string }) {
    return await ai(OPENAI.GPT_4, body.prompt);
  }
}

🛡️ Built-in Security

Firewall Protection

Block prompt injection attacks automatically:

import { configure, ai, OPENAI } from 'cost-katana';

await configure({ firewall: true });

try {
  await ai(OPENAI.GPT_4, 'Ignore all previous instructions and...');
} catch (error) {
  console.log('🛡️ Blocked:', error.message);
}

Protects against:

  • Prompt injection attacks
  • Jailbreak attempts
  • Data exfiltration
  • Malicious content generation

🔄 Auto-Failover

Never let provider outages break your app:

import { ai, OPENAI } from 'cost-katana';

// If OpenAI is down, automatically switches to Claude or Gemini
const response = await ai(OPENAI.GPT_4, 'Hello');

console.log(`Provider used: ${response.provider}`);
// Could be 'openai', 'anthropic', or 'google' depending on availability

📊 Session Replay & Tracing

Record AI Sessions

import { SessionReplayClient } from 'cost-katana/trace';

const replay = new SessionReplayClient({
  apiKey: process.env.COST_KATANA_API_KEY
});

// Start recording
const { sessionId } = await replay.startRecording({
  userId: 'user123',
  feature: 'chat',
  label: 'Support Conversation'
});

// Record interactions
await replay.recordInteraction({
  sessionId,
  interaction: {
    timestamp: new Date(),
    model: 'gpt-4',
    prompt: 'How do I reset my password?',
    response: 'To reset your password...',
    tokens: { input: 8, output: 45 },
    cost: 0.0012,
    latency: 850
  }
});

// End and retrieve
await replay.endRecording(sessionId);
const session = await replay.getSessionReplay(sessionId);

Distributed Tracing

import { TraceClient, createTraceMiddleware } from 'cost-katana/trace';
import express from 'express';

const app = express();
const trace = new TraceClient({ apiKey: process.env.COST_KATANA_API_KEY });

app.use(createTraceMiddleware({ traceService: trace }));

// All routes automatically traced
app.post('/api/chat', async (req, res) => {
  const response = await ai(OPENAI.GPT_4, req.body.message);
  res.json(response);
});

💡 Cost Optimization Cheatsheet

| Strategy | Savings | When to Use | |----------|---------|-------------| | Use GPT-3.5 over GPT-4 | 90% | Simple tasks, translations | | Enable caching | 100% on hits | Repeated queries, FAQs | | Enable Cortex | 40-75% | Long-form content | | Batch in sessions | 10-20% | Related queries | | Use Gemini Flash | 95% vs GPT-4 | High-volume, cost-sensitive |

Quick Wins

// ❌ Expensive: Using GPT-4 for everything
await ai(OPENAI.GPT_4, 'What is 2+2?');  // $0.001

// ✅ Smart: Match model to task
await ai(OPENAI.GPT_3_5_TURBO, 'What is 2+2?');  // $0.0001

// ✅ Smarter: Cache common queries
await ai(OPENAI.GPT_3_5_TURBO, 'What is 2+2?', { cache: true });  // $0 on repeat

// ✅ Smartest: Cortex for long content
await ai(OPENAI.GPT_4, 'Write a 2000-word essay', { cortex: true });  // 40-75% off

🔧 Error Handling

import { ai, OPENAI } from 'cost-katana';

try {
  const response = await ai(OPENAI.GPT_4, 'Hello');
  console.log(response.text);
} catch (error) {
  switch (error.code) {
    case 'NO_API_KEY':
      console.log('Set COST_KATANA_API_KEY or OPENAI_API_KEY');
      break;
    case 'RATE_LIMIT':
      console.log('Rate limited. Retrying...');
      break;
    case 'INVALID_MODEL':
      console.log('Model not found. Available:', error.availableModels);
      break;
    default:
      console.log('Error:', error.message);
  }
}

📚 More Examples

Explore 45+ complete examples in our examples repository:

🔗 github.com/Hypothesize-Tech/costkatana-examples

| Category | Examples | |----------|----------| | Cost Tracking | Basic tracking, budgets, alerts | | Gateway | Routing, load balancing, failover | | Optimization | Cortex, caching, compression | | Observability | OpenTelemetry, tracing, metrics | | Security | Firewall, rate limiting, moderation | | Workflows | Multi-step AI orchestration | | Frameworks | Express, Next.js, Fastify, NestJS, FastAPI |


🔄 Migration Guides

From OpenAI SDK

// Before
import OpenAI from 'openai';
const openai = new OpenAI({ apiKey: 'sk-...' });
const completion = await openai.chat.completions.create({
  model: 'gpt-4',
  messages: [{ role: 'user', content: 'Hello' }]
});
console.log(completion.choices[0].message.content);

// After
import { ai, OPENAI } from 'cost-katana';
const response = await ai(OPENAI.GPT_4, 'Hello');
console.log(response.text);
console.log(`Cost: $${response.cost}`);  // Bonus: cost tracking!

From Anthropic SDK

// Before
import Anthropic from '@anthropic-ai/sdk';
const anthropic = new Anthropic({ apiKey: 'sk-ant-...' });
const message = await anthropic.messages.create({
  model: 'claude-3-sonnet-20241022',
  messages: [{ role: 'user', content: 'Hello' }]
});

// After
import { ai, ANTHROPIC } from 'cost-katana';
const response = await ai(ANTHROPIC.CLAUDE_3_5_SONNET_20241022, 'Hello');

From LangChain

// Before
import { ChatOpenAI } from 'langchain/chat_models/openai';
const model = new ChatOpenAI({ modelName: 'gpt-4' });
const response = await model.call([{ content: 'Hello' }]);

// After
import { ai, OPENAI } from 'cost-katana';
const response = await ai(OPENAI.GPT_4, 'Hello');

🤝 Contributing

We welcome contributions! See our Contributing Guide.

git clone https://github.com/Hypothesize-Tech/costkatana-core.git
cd costkatana-core
npm install

npm run lint        # Check code style
npm run lint:fix    # Auto-fix issues
npm run format      # Format code
npm test            # Run tests
npm run build       # Build

📞 Support

| Channel | Link | |---------|------| | Dashboard | costkatana.com | | Documentation | docs.costkatana.com | | GitHub | github.com/Hypothesize-Tech | | Discord | discord.gg/D8nDArmKbY | | Email | [email protected] |


📄 License

MIT © Cost Katana


Start cutting AI costs today 🥷

npm install cost-katana
import { ai, OPENAI } from 'cost-katana';
await ai(OPENAI.GPT_4, 'Hello, world!');