cp-toolkit
v3.1.3
Published
Copilot Toolkit - Native AI Agents & Skills for GitHub Copilot (v2026)
Maintainers
Readme
cp-toolkit
GitHub Copilot Agent Toolkit - Initialize and manage AI agents for your project
Installation
# Global install
npm install -g cp-toolkit
# Or use with npx
npx cp-toolkit initQuick Start
# Initialize in current directory
cp-toolkit init
# Initialize in new directory
cp-toolkit init my-project
# Skip prompts (use defaults)
cp-toolkit init -yCommands
cp-toolkit init [directory]
Initialize cp-toolkit with GitHub Copilot 2026 structure:
.github/
├── copilot-instructions.md # Global instructions (always active)
├── agents/ # Agent definitions
│ ├── orchestrator.md
│ ├── frontend-specialist.md
│ └── backend-specialist.md
└── instructions/ # Path-specific rules
├── typescript.instructions.md
├── python.instructions.md
└── security.instructions.md
AGENTS.md # Universal AI instructions
.vscode/mcp.json # MCP server configurationOptions:
-y, --yes- Skip prompts, use defaults-f, --force- Overwrite existing configuration
cp-toolkit add <type> <name>
Add new components:
# Add a new agent
cp-toolkit add agent my-specialist
# Add a new instruction
cp-toolkit add instruction golangcp-toolkit list [type]
List available components:
cp-toolkit list agents # List all agents
cp-toolkit list instructions # List all instructions
cp-toolkit list all # List everythingcp-toolkit doctor
Check configuration and diagnose issues:
cp-toolkit doctorGitHub Copilot Integration
After initialization, GitHub Copilot automatically loads:
- copilot-instructions.md - Always active, global rules
- agents/*.md - Invokable with
@agent-name - instructions/*.instructions.md - Applied based on
applyTopatterns
Using Agents
In GitHub Copilot Chat:
@frontend-specialist Create a responsive navbar component
@security-auditor Review this authentication flow
@orchestrator Implement user dashboard with APIPath-Specific Instructions
Instructions are applied automatically based on file patterns:
# typescript.instructions.md
---
applyTo: "**/*.ts,**/*.tsx"
---
## TypeScript Guidelines
- Enable strict mode
- No any types
...Structure
| File | Purpose |
|------|---------|
| .github/copilot-instructions.md | Global instructions (always active) |
| .github/agents/*.md | Agent definitions |
| .github/instructions/*.instructions.md | Path-specific rules |
| AGENTS.md | Universal AI instructions |
| .vscode/mcp.json | MCP server configuration |
| .github/cp-kit-models.yaml | AI model allocation matrix |
Architect-Builder Strategy
cp-toolkit implements the Architect-Builder Pattern for optimal AI agent performance. This strategy separates reasoning from execution:
Dual-Mode Architecture
┌─────────────────────────────────────────────────────────────────┐
│ SINGLE MODE HYBRID MODE (Architect-Builder) │
│ ───────────── ─────────────────────────────── │
│ │
│ ┌─────────────────┐ PLANNER EXECUTOR │
│ │ High-IQ Model │ (Architect) (Builder) │
│ │ Pure Reasoning │ ┌──────────┐ ┌──────────┐ │
│ └─────────────────┘ │ temp 0.1 │ → │ temp 0.3 │ │
│ │ Strategy │ │ Code Gen │ │
│ • orchestrator └──────────┘ └──────────┘ │
│ • security-auditor │
│ • debugger • backend-specialist │
│ • documentation-writer • frontend-specialist │
│ • devops-engineer │
└─────────────────────────────────────────────────────────────────┘Mode Selection
| Mode | Temperature | Use Case | |------|-------------|----------| | Single | 0.1 | Pure reasoning tasks (analysis, planning, auditing) | | Hybrid Planner | 0.1 | Strategic thinking, architecture decisions | | Hybrid Executor | 0.3 | Code generation, implementation |
Agent Categories
Leadership & Strategy (Single Mode)
orchestrator,product-manager,product-owner,project-planner
Development Core (Hybrid Mode)
backend-specialist,frontend-specialist,mobile-developer,game-developer
Infrastructure & Ops (Hybrid Mode)
devops-engineer,database-architect,security-auditor,penetration-tester
Quality & Optimization (Hybrid Mode)
qa-automation-engineer,test-engineer,performance-optimizer,debugger
Specialists & Research (Mixed)
code-archaeologist,documentation-writer,seo-specialist,explorer-agent
Why This Works
- Planner (Architect): Uses high-reasoning models with low temperature for accurate strategic decisions
- Executor (Builder): Uses fast code-generation models with slightly higher temperature for creative implementation
- Cost Optimization: Expensive models only for planning; economical models for bulk code generation
- Quality Assurance: Clear separation prevents "hallucination drift" in long implementations
Models Configuration
The cp-kit-models.yaml file defines the model allocation:
agents:
backend-specialist:
mode: "hybrid"
planner:
model: "gpt-5.2"
task: "API architecture, security and data modeling"
executor:
model: "gpt-5.2-codex"
task: "Route and service implementation with perfect typing"License
MIT
