npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

csg

v1.0.1

Published

Constructive solid geometry on meshes using BSP trees in JavaScript

Downloads

774

Readme

csg.js

Constructive Solid Geometry (CSG) is a modeling technique that uses Boolean operations like union and intersection to combine 3D solids. This library implements CSG operations on meshes elegantly and concisely using BSP trees, and is meant to serve as an easily understandable implementation of the algorithm. All edge cases involving overlapping coplanar polygons in both solids are correctly handled.

Example usage:

var cube = CSG.cube();
var sphere = CSG.sphere({ radius: 1.3 });
var polygons = cube.subtract(sphere).toPolygons();

Documentation

Detailed documentation can be automatically generated using Docco.

Demos

Implementation Details

All CSG operations are implemented in terms of two functions, clipTo() and invert(), which remove parts of a BSP tree inside another BSP tree and swap solid and empty space, respectively. To find the union of a and b, we want to remove everything in a inside b and everything in b inside a, then combine polygons from a and b into one solid:

a.clipTo(b);
b.clipTo(a);
a.build(b.allPolygons());

The only tricky part is handling overlapping coplanar polygons in both trees. The code above keeps both copies, but we need to keep them in one tree and remove them in the other tree. To remove them from b we can clip the inverse of b against a. The code for union now looks like this:

a.clipTo(b);
b.clipTo(a);
b.invert();
b.clipTo(a);
b.invert();
a.build(b.allPolygons());

Subtraction and intersection naturally follow from set operations. If union is A | B, subtraction is A - B = ~(~A | B) and intersection is A & B = ~(~A | ~B) where ~ is the complement operator.

License

Copyright (c) 2011 Evan Wallace (http://madebyevan.com/), under the MIT license.