cubicler
v2.6.1
Published
Modular AI Orchestration Framework
Readme
Cubicler

A modular AI orchestration framework that connects applications to AI agents and external services
Cubicler: Where AI agents go to work 🏢
🎯 What is Cubicler?
Cubicler is a smart AI orchestration hub that connects your applications to AI agents and external services. Think of it as a universal translator and router for AI interactions.
The Problem It Solves
- Multiple AI models: GPT, Claude, local models - all with different APIs
- Scattered tools: Weather APIs, databases, and services that AI agents need access to
- Complex integration: Each AI model needs different setup and communication patterns
- No standardization: Every service speaks a different protocol
The Cubicler Solution
Your App → Cubicler → AI Agent → External Services
↑ ↓
└─── Response ←───────┘Simple workflow:
- Your app sends a message to Cubicler
- Cubicler routes it to the right AI agent
- AI agent discovers and uses available tools/services
- Response flows back to your app
Core Benefits
- 🔌 Universal AI Integration: Switch between AI models without code changes
- 🛠️ Rich Tool Ecosystem: AI agents can use APIs, databases, and external services
- 📱 Rich Message Support: Text, images, URLs with comprehensive metadata
- ⚡ Multiple Transports: HTTP, SSE streaming, stdio processes, and direct models
- 🔐 Enterprise Security: JWT authentication and secure communications
- 📊 Easy Configuration: JSON-based setup with environment variable support
🏗️ How It Works
Cubicler connects four types of components:

- Your app sends a request to Cubicler
- Cubicler routes it to the appropriate AI agent
- AI agent can discover and use external services through Cubicler
- Response flows back to your app with the result
� Getting Started
Quick Start with Docker
# Pull and run from Docker Hub
docker run -p 1503:1503
-e CUBICLER_AGENTS_LIST=https://your-cloud.com/agents.json
-e CUBICLER_PROVIDERS_LIST=https://your-cloud.com/providers.json
cubicler/cubicler:2.3.0Installation from Source
git clone https://github.com/cubicler/Cubicler.git
cd Cubicler
npm installEnvironment Setup
Create a .env file:
# Required - Source of providers list (local file or remote URL)
CUBICLER_PROVIDERS_LIST=https://your-cloud.com/providers.json
# Required - Source of agents list (local file or remote URL)
CUBICLER_AGENTS_LIST=https://your-cloud.com/agents.json
# Optional - Source of webhooks configuration (local file or remote URL)
CUBICLER_WEBHOOKS_LIST=./webhooks.json
# Optional - Server port (default: 1503)
CUBICLER_PORT=1503
# Optional - Path to Cubicler server configuration file
CUBICLER_CONFIG=./cubicler.jsonStart the Server
# Development mode (with watch)
npm run dev
# Build and run production
npm run build
npm startVisit: http://localhost:1503
⚙️ Configuration
Cubicler uses two main configuration files to connect AI agents and external services.
Quick Configuration Overview
Environment Variables:
# Required: Where to find your configurations
CUBICLER_AGENTS_LIST=https://your-server.com/agents.json
CUBICLER_PROVIDERS_LIST=https://your-server.com/providers.json
# Optional: Server settings
CUBICLER_PORT=1503
CUBICLER_CONFIG=./cubicler.jsonSimple Agent Configuration (agents.json):
{
"basePrompt": "You are a helpful AI assistant.",
"agents": [
{
"identifier": "gpt-4o-direct",
"name": "GPT-4o Direct Agent",
"transport": "direct",
"config": {
"provider": "openai",
"apiKey": "${OPENAI_API_KEY}",
"model": "gpt-4o",
"summarizerModel": "gpt-4o-mini"
},
"description": "OpenAI GPT-4o with AI summarization for complex tool responses"
},
{
"identifier": "my-http-agent",
"name": "Custom HTTP Agent",
"transport": "http",
"config": {
"url": "http://localhost:3000/agent",
"auth": {
"type": "jwt",
"config": {
"token": "${AGENT_JWT_TOKEN}"
}
}
}
}
]
}Simple Provider Configuration (providers.json):
{
"mcpServers": [
{
"identifier": "weather_service",
"name": "Weather Service",
"transport": "http",
"config": {
"url": "{{env.WEATHER_API_URL}}/mcp",
"headers": {
"Authorization": "Bearer {{env.WEATHER_API_KEY}}"
}
}
}
],
"restServers": [
{
"identifier": "user_api",
"name": "User Management API",
"transport": "http",
"config": {
"url": "https://api.example.com"
},
"endPoints": [
{
"name": "get_user_status",
"path": "/users/{userId}/status",
"method": "GET",
"response_transform": [
{
"path": "status",
"transform": "map",
"map": { "0": "Offline", "1": "Online", "2": "Away" }
},
{
"path": "last_login",
"transform": "date_format",
"format": "YYYY-MM-DD HH:mm:ss"
},
{
"path": "internal_data",
"transform": "remove"
}
]
}
]
}
]
}🔄 Response Transformations
Cubicler can automatically clean and transform API responses before sending them to AI agents. This makes legacy APIs much easier for AI agents to understand and work with.
Supported Transformations:
| Type | Purpose | Example |
|------|---------|---------|
| map | Transform values using key-value mapping | {"0": "Offline", "1": "Online"} |
| date_format | Format dates with custom patterns | "YYYY-MM-DD HH:mm:ss" |
| template | Apply string templates | "User: {value}" |
| regex_replace | Replace text using regex | {"pattern": "\\s+", "replacement": " "} |
| remove | Remove sensitive/unnecessary fields | Removes debug info, internal IDs |
Advanced Path Syntax:
{
"response_transform": [
{
"path": "users[].status",
"transform": "map",
"map": { "1": "Active", "0": "Inactive" }
},
{
"path": "_root[].metadata.internal",
"transform": "remove"
},
{
"path": "timestamps.created",
"transform": "date_format",
"format": "YYYY-MM-DD"
}
]
}Before transformation:
{
"users": [
{"id": 1, "status": "1", "metadata": {"internal": "secret"}},
{"id": 2, "status": "0", "metadata": {"internal": "secret"}}
],
"timestamps": {"created": "2023-12-25T10:30:45.000Z"}
}After transformation:
{
"users": [
{"id": 1, "status": "Active"},
{"id": 2, "status": "Inactive"}
],
"timestamps": {"created": "2023-12-25"}
}🔐 JWT Authentication for Providers
Secure your MCP servers and REST APIs with JWT authentication:
Static JWT Token:
{
"mcpServers": [
{
"identifier": "secure_mcp",
"name": "Secure MCP Server",
"transport": "http",
"config": {
"url": "https://secure-api.example.com/mcp",
"auth": {
"type": "jwt",
"config": {
"token": "${MCP_JWT_TOKEN}"
}
}
}
}
],
"restServers": [
{
"identifier": "secure_api",
"name": "Secure REST API",
"transport": "http",
"config": {
"url": "https://secure-api.example.com/api",
"auth": {
"type": "jwt",
"config": {
"tokenUrl": "https://auth.example.com/oauth/token",
"clientId": "${OAUTH_CLIENT_ID}",
"clientSecret": "${OAUTH_CLIENT_SECRET}",
"audience": "api-audience",
"refreshThreshold": 10
}
}
},
"endPoints": [
{
"name": "get_secure_data",
"path": "/secure/data/{id}",
"method": "GET"
}
]
}
]
}JWT Features:
- 🔐 Static tokens - Simple API key-style authentication
- 🔄 OAuth2 client credentials flow - Enterprise-grade authentication
- ⏰ Automatic token refresh - Configurable refresh thresholds
- 💾 Token caching - Improved performance and reduced API calls
- 🌍 Environment variable support - Keep secrets secure
🤖 AI Agent Summarization
Direct agents (OpenAI integration) support intelligent task delegation to specialized summarizer agents:
{
"identifier": "smart-agent",
"transport": "direct",
"config": {
"provider": "openai",
"model": "gpt-4o",
"summarizerModel": "gpt-4o-mini",
"sessionMaxTokens": 8192
}
}How it works:
- The main GPT agent can delegate specific tasks to the
summarizerModelwith focused prompts - The summarizer calls tools independently with smaller token overhead and specialized instructions
- Example: Main agent says "summarize error log that might be related to memory issues"
- The
gpt-4o-minisummarizer then calls the error log tool and provides a focused summary - More efficient than the main agent processing large datasets with its full context
- Enables specialized task processing while keeping the main conversation lightweight
💡 Environment Variables: Use
{{env.VARIABLE_NAME}}syntax to substitute environment variables securely.
For detailed configuration options, see the integration guides:
- 🤖 Agent Integration Guide - Complete agent setup (Direct, HTTP, SSE, Stdio)
- � Provider Integration Guide - MCP servers and REST API integration
- � JWT Authentication - Detailed security configuration examples
🔐 Security & Authentication
Cubicler supports comprehensive JWT authentication for securing both incoming requests and outgoing agent communications.
Quick JWT Setup:
# Environment variables
JWT_SECRET=your-jwt-secret
OAUTH_CLIENT_ID=your-client-id
OAUTH_CLIENT_SECRET=your-client-secretServer Configuration (cubicler.json):
{
"server": {
"auth": {
"jwt": {
"secret": "${JWT_SECRET}",
"issuer": "cubicler-instance",
"required": true
}
}
}
}Agent Authentication (in agents.json):
{
"config": {
"auth": {
"type": "jwt",
"config": {
"token": "${JWT_TOKEN}"
}
}
}
}For complete security configuration, see the Authentication Guide and integration guides.
📡 Using Cubicler
Main API Endpoints
| Endpoint | Purpose |
|----------|---------|
| POST /dispatch | Send messages to any available agent |
| POST /dispatch/:agentId | Send messages to a specific agent |
| POST /webhook/:identifier/:agentId | Webhook endpoint for external triggers |
| GET /agents | List all available agents |
| GET /health | Check system health |
Quick Example
Send a text message:
POST /dispatch
{
"messages": [
{
"sender": {"id": "user_123", "name": "John"},
"type": "text",
"content": "What's the weather like in Jakarta?"
}
]
}Get response:
{
"sender": {"id": "gpt_4o", "name": "GPT-4O Agent"},
"type": "text",
"content": "The current weather in Jakarta is 28°C with partly cloudy conditions.",
"metadata": {"usedToken": 150, "usedTools": 2}
}📱 Rich Message Support
Cubicler supports rich messaging with text, images, URLs, and comprehensive metadata:
Message Types
| Type | Purpose | Content Field | Metadata |
|------|---------|---------------|----------|
| text | Text messages and responses | String content | Optional |
| image | Base64 encoded images | Base64 image data | Required (format, fileName, etc.) |
| url | Image/file URLs | URL string | Required (format, fileExtension, etc.) |
| null | Empty or system messages | null | Optional |
Image Messages
Send an image (Base64):
POST /dispatch
{
"messages": [
{
"sender": {"id": "user_123", "name": "John"},
"type": "image",
"content": "...",
"metadata": {
"format": "base64",
"fileName": "vacation-photo.jpg",
"fileExtension": "jpg",
"fileSize": 2048576
}
}
]
}Send an image (URL):
POST /dispatch
{
"messages": [
{
"sender": {"id": "user_123", "name": "John"},
"type": "url",
"content": "https://example.com/images/vacation-photo.jpg",
"metadata": {
"format": "url",
"fileName": "vacation-photo.jpg",
"fileExtension": "jpg"
}
}
]
}AI Agent Image Response:
{
"sender": {"id": "gpt_4o_vision", "name": "GPT-4O Vision Agent"},
"type": "image",
"content": "...",
"contentMetadata": {
"format": "base64",
"fileName": "generated-diagram.png",
"fileExtension": "png",
"fileSize": 1024768
},
"metadata": {"usedToken": 2500, "usedTools": 1}
}Message Metadata Fields
| Field | Type | Description | Required |
|-------|------|-------------|----------|
| format | "base64" \| "url" | How content is encoded/referenced | ✅ |
| fileName | string | Original filename | Optional |
| fileExtension | string | File extension (jpg, png, pdf, etc.) | Optional |
| fileSize | number | File size in bytes | Optional |
Multi-Message Conversations
POST /dispatch
{
"messages": [
{
"sender": {"id": "user_123", "name": "John"},
"type": "text",
"content": "Can you analyze this image?"
},
{
"sender": {"id": "user_123", "name": "John"},
"type": "image",
"content": "...",
"metadata": {
"format": "base64",
"fileName": "chart.jpg",
"fileExtension": "jpg"
}
}
]
}💡 Vision-Enabled Agents: Use GPT-4 Vision or other vision-capable agents to analyze images, extract text from documents, describe visual content, and generate image-based insights.
For complete API documentation and examples, see Client Integration Guide.
🔗 Webhook Integration
Cubicler supports webhooks for event-driven AI interactions. External systems can trigger AI agents automatically through webhook endpoints.
Webhook Endpoint:
POST /webhook/:identifier/:agentIdQuick Example:
POST /webhook/calendar-events/scheduler-agent
{
"event": {
"title": "Team Meeting",
"start_time": "2025-08-07T14:00:00Z",
"priority": "3"
}
}Key Features:
- 🎯 Event-driven AI: External systems trigger agents automatically
- 🔐 Secure Authentication: Signature validation and bearer tokens
- 🔄 Payload Transformations: Clean and normalize webhook data for agents
- ⚡ Agent Authorization: Only configured agents can receive specific webhooks
Use Cases:
- Calendar Integration: Meeting reminders and schedule management
- System Monitoring: Automated alert analysis and response
- IoT Events: Smart environment control and automation
- CI/CD Integration: Build status analysis and deployment assistance
For complete webhook setup and configuration, see Webhook Integration Guide.
📚 Integration Guides
Choose your integration path:
🚀 Application Developers
Connect your apps, bots, and interfaces to Cubicler:
- Client Integration Guide - Build chat apps, Telegram bots, web interfaces
🤖 AI Engineers
Build and deploy AI agents:
- Agent Integration Overview - Start here for agent integration
- HTTP Agents - Web-based agents (most common)
- Stdio Agents - Command-line and local agents
- SSE Agents - Real-time streaming agents
🔧 Service Providers
Connect your APIs and services:
- Provider Integration Overview - Start here for service integration
- HTTP MCP Providers - RESTful MCP services (see overview)
- SSE MCP Providers - Streaming MCP services (see overview)
- Stdio MCP Providers - Command-line MCP services (see overview)
🔗 System Integrators
Connect external systems to trigger AI agents automatically:
- Webhook Integration Guide - Event-driven AI with calendar systems, monitoring tools, IoT devices
🎯 Real-World Example
Here's what happens when someone asks for weather through a Telegram bot:
1. User Request
POST /dispatch
{
"messages": [
{
"sender": {"id": "telegram_user_123"},
"content": "What's the weather in Paris?"
}
]
}2. AI Agent Discovery
The AI agent uses built-in tools to discover available services:
- Calls
cubicler_available_servers→ finds weather service - Calls
cubicler_fetch_server_tools→ gets weather functions
3. Service Call
AI agent calls: 1r2dj4_get_current_weather({"city": "Paris"})
Raw API response: {"temp": "22", "condition": "01", "debug_trace": "..."}
After transformation: {"temperature": "22°C", "condition": "Sunny"}
💡 Response Transformations: Cubicler automatically cleans API responses using configured transformations. In this example, the weather service maps condition codes ("01" → "Sunny") and formats temperatures, while removing debug information that would confuse the AI agent.
💡 Function Naming: The function name
1r2dj4_get_current_weatherfollows Cubicler's hash-based naming convention. The1r2dj4part is a 6-character hash derived from the server identifier and URL (weather_service:http://localhost:4000/mcp). This ensures function names are:
- Collision-resistant: No conflicts between services
- Config-order independent: Same server always gets same hash
- Deterministic: Predictable and stable across deployments
4. Final Response
{
"content": "The weather in Paris is currently 22°C and sunny!",
"metadata": {"usedTools": 2}
}🧪 Features
- 🔌 MCP Protocol Support: Connect to standardized AI services
- 🎯 Flexible Agent Configuration: Multiple AI models, custom prompts
- ⚡ Direct AI Integration: Built-in OpenAI GPT support without separate agent services
- 🤖 AI Agent Summarization: GPT can delegate focused tasks to specialized summarizer agents
- � Rich Message Support: Text, images, URLs with metadata for multimedia conversations
- �🔐 REST API Integration: Use any HTTP API as an AI tool
- 🧩 Response Transformations: Clean and transform API responses automatically
- 🛡️ Comprehensive JWT Authentication: Secure agents, MCP servers, and REST APIs
- 🔐 OAuth2 & Static Tokens: Enterprise authentication with automatic refresh
- 🛠️ Built-in Discovery Tools: AI agents can explore available services
- 🧩 Modular Architecture: Clean, maintainable service separation
- 📘 TypeScript: Full type safety and excellent developer experience
- 🔄 Hot Configuration: Update settings without restarting
- 🚀 Multiple Transport Types: Direct, HTTP, SSE, and Stdio for both agents and MCP servers
🧪 Development & Testing
# Run tests
npm test
# Development mode with auto-reload
npm run dev
# Build for production
npm run build
npm start🤝 Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Make your changes
- Add tests if needed
- Submit a pull request
📄 License
This project is licensed under the Apache 2.0 License - see the LICENSE file for details.
🎯 What's Next?
Cubicler is designed for future expansion:
- Advanced Vision AI: Enhanced image analysis and generation capabilities
- Multi-transport Support: WebSocket support for real-time communication
- Enhanced MCP Features: Advanced protocol capabilities
- Multi-agent Workflows: Coordinated AI agent interactions
- Advanced Orchestration: Complex routing and processing
Cubicler: Where AI agents go to work 🏢
