cursor-feedback
v1.1.0
Published
One Cursor conversation, unlimited AI interactions - Save your monthly request quota! Interactive feedback loop for AI chat via MCP
Downloads
3,421
Maintainers
Readme
Cursor Feedback
One Cursor conversation, unlimited AI interactions - Save your monthly request quota! An interactive feedback tool for Cursor that enables unlimited interactions within a single conversation through MCP (Model Context Protocol).

💡 Why Cursor Feedback?
If you're on Cursor's 500 requests/month plan, every conversation counts. With Cursor Feedback:
- One conversation, unlimited interactions - Keep chatting without consuming extra quota
- Human-in-the-loop workflow - AI waits for your feedback before proceeding
- Sidebar integration - No external browser needed, everything stays in your IDE
✨ Features
- 🎯 Sidebar Integration - Feedback UI embedded directly in the IDE sidebar
- 💬 Interactive Feedback - AI Agent requests feedback via MCP tool
- 🖼️ Image Support - Upload images or paste directly (Ctrl+V / Cmd+V)
- 📁 File Support - Select files/folders to share paths with AI
- 📝 Markdown Rendering - Full Markdown support for AI summaries
- ⏱️ Auto-retry on Timeout - 5-minute default timeout, AI automatically re-requests
- 🌍 Multi-language - Supports English, Simplified Chinese, Traditional Chinese
- 🔒 Project Isolation - Multiple windows work independently
🚀 Quick Start
1. Install the Cursor Extension
Search for "Cursor Feedback" in the Cursor extension marketplace.
Can't find it? Install via command line:
cursor --install-extension jianger666.cursor-feedback
2. Configure MCP Server
Option A: One-click Install (Recommended)
Click the button below to automatically configure the MCP Server:
Option B: Manual Configuration
Add to your Cursor MCP config file (~/.cursor/mcp.json):
{
"mcpServers": {
"cursor-feedback": {
"command": "npx",
"args": ["-y", "cursor-feedback@latest"]
}
}
}Option C: Global Installation
npm install -g cursor-feedbackThen configure:
{
"mcpServers": {
"cursor-feedback": {
"command": "cursor-feedback-mcp"
}
}
}3. Usage
- Restart Cursor
- The Cursor Feedback icon appears in the sidebar
- Ask AI to call the
interactive_feedbacktool in chat - AI displays work summary in sidebar, waiting for your feedback
4. Configure User Rules (Recommended)
Add these User Rules in Cursor settings for best experience:
# Cursor Feedback Rules
1. Always call MCP cursor-feedback during any workflow, task, or conversation.
2. After receiving user feedback, call MCP cursor-feedback again and adjust behavior accordingly.
3. Before completing a task, use MCP cursor-feedback to ask for user feedback.
4. All content to show users must be passed through cursor-feedback's summary parameter.This enables continuous interactive dialogue where AI automatically uses Cursor Feedback throughout the conversation.
📖 MCP Tool
interactive_feedback
Interactive feedback collection tool.
Parameters:
| Parameter | Type | Default | Description |
|-----------|------|---------|-------------|
| project_directory | string | . | Absolute path of project directory (for multi-window isolation) |
| summary | string | I have completed the task you requested. | AI work summary (supports Markdown) |
| timeout | number | 300 | Timeout in seconds (default 5 minutes) |
Timeout Mechanism:
- Default wait time: 5 minutes (300 seconds)
- On timeout, AI receives notification
- AI automatically re-calls the tool based on instructions
- Even if you step away, AI will still be waiting when you return
Returns:
User feedback content including text, images, and attached file paths.
⚙️ Configuration
Language Settings
Method 1: Click the 🌐 button in the sidebar (Recommended)
Click the globe icon in the Cursor Feedback sidebar to switch languages.
Method 2: Through VS Code Settings
Search "Cursor Feedback" in settings:
| Setting | Type | Default | Description |
|---------|------|---------|-------------|
| cursorFeedback.language | string | zh-CN | UI language |
Available languages:
zh-CN- Simplified Chinese (简体中文)en- English
MCP Server Configuration
Basic config:
{
"mcpServers": {
"cursor-feedback": {
"command": "npx",
"args": ["-y", "cursor-feedback@latest"]
}
}
}Custom timeout (optional, default 5 minutes):
{
"mcpServers": {
"cursor-feedback": {
"command": "npx",
"args": ["-y", "cursor-feedback@latest"],
"env": {
"MCP_FEEDBACK_TIMEOUT": "600"
}
}
}
}| Environment Variable | Default | Description |
|---------------------|---------|-------------|
| MCP_FEEDBACK_TIMEOUT | 300 | Timeout in seconds (default 5 minutes) |
| MCP_AUTO_RETRY | true | Whether AI should auto-retry on timeout. Set to false to disable |
🏗️ Architecture
┌─────────────────┐ stdio ┌──────────────────┐
│ AI Agent │ ◄──────────► │ MCP Server │
│ (Cursor) │ │ (mcp-server.js) │
└─────────────────┘ └────────┬─────────┘
│ HTTP API
▼
┌──────────────────┐
│ Cursor Extension│
│ (extension.js) │
└────────┬─────────┘
│ WebView
▼
┌──────────────────┐
│ User Interface │
│ (Sidebar) │
└──────────────────┘Workflow:
- AI Agent calls MCP Server's
interactive_feedbacktool via stdio - MCP Server creates feedback request, exposes via HTTP API
- Cursor extension polls for requests, displays in sidebar WebView
- User inputs feedback (text/images/files), submits via HTTP
- MCP Server returns feedback result to AI Agent
📊 Comparison with mcp-feedback-enhanced
| Feature | mcp-feedback-enhanced | cursor-feedback | |---------|:--------------------:|:---------------:| | MCP Tool | ✅ | ✅ | | Text Feedback | ✅ | ✅ | | Image Upload | ✅ | ✅ | | Image Paste | ✅ | ✅ | | File/Folder Selection | ❌ | ✅ | | Markdown Rendering | ✅ | ✅ | | Multi-language | ✅ | ✅ | | Auto-retry on Timeout | ✅ | ✅ | | IDE Sidebar Integration | ❌ | ✅ | | Multi-window Project Isolation | ❌ | ✅ | | Command Execution | ✅ | ⏳ |
🛠️ Development
# Clone the project
git clone https://github.com/jianger666/cursor-feedback-extension.git
cd cursor-feedback-extension
# Install dependencies
npm install
# Compile
npm run compile
# Watch mode
npm run watch
# Run lint
npm run lint
# Package extension
npx vsce package📄 License
MIT
🙏 Acknowledgments
- mcp-feedback-enhanced - Original Python implementation
- Model Context Protocol - MCP Protocol
