npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

dag-workflow

v1.1.1

Published

A powerful workflow engine that supports DAG (Directed Acyclic Graph) task scheduling with conditional branching, parallel execution, and context management.

Readme

DAG Workflow Engine

A powerful workflow engine that supports DAG (Directed Acyclic Graph) task scheduling with conditional branching, parallel execution, and context management.

中文文档

Features

  • 🔄 DAG Task Scheduling
    • Complex task dependency support
    • Automatic cycle detection
    • Multi-level task execution
    • Task retry mechanism
  • 🔀 Conditional Branching
    • Dynamic condition evaluation
    • Multiple branch path selection
    • Default branch support
  • ⚡ Parallel Execution
    • Same-level task parallelization
    • Multi-task combination support
  • 📦 Context Management
    • Inter-task data sharing
    • Dynamic context updates
    • Status tracking
    • Task status change notifications

Installation

npm install dag-workflow
# or
yarn add dag-workflow
# or
pnpm add dag-workflow

Quick Start

Basic Example: Weather Query Workflow

import { 
  DAGWorkflowEngine, 
  TaskExecutor, 
  ContextManager,
  type DAGTask,
  type TaskInput 
} from 'dag-workflow';

// 1. Define Tasks
class DataCleanTask implements DAGTask {
  name = 'DataCleanTask';
  async execute(input: TaskInput) {
    const rawData = input.rawData;
    const cleanedData = rawData.trim().replace(/\s+/g, ' ').toLowerCase();
    return { ...input, cleanedData };
  }
}

class IntentRecognitionTask implements DAGTask {
  name = 'IntentRecognitionTask';
  async execute(input: TaskInput) {
    const cleanedData = input.cleanedData.toLowerCase();
    const intent = cleanedData.includes('weather')
      ? 'weather_query'
      : 'unknown';
    return { ...input, intent };
  }
}

class WeatherTask implements DAGTask {
  name = 'WeatherTask';
  async execute(input: TaskInput) {
    return {
      ...input,
      weatherInfo: { temperature: '25°C', condition: 'Sunny' },
    };
  }
}

class DefaultTask implements DAGTask {
  name = 'DefaultTask';
  async execute(input: TaskInput) {
    return {
      ...input,
      defaultResponse: "I'm sorry, I don't understand your request.",
    };
  }
}

// 2. Create Workflow
const workflowDefinition = {
  tasks: [
    new DataCleanTask(),
    new IntentRecognitionTask(),
    {
      branches: [
        {
          condition: (context) => context.get('intent') === 'weather_query',
          next: new WeatherTask(),
        },
      ],
      default: new DefaultTask(),
    },
  ],
};

// 3. Run Workflow
const context = new ContextManager();
const executor = new TaskExecutor(context);
const engine = new DAGWorkflowEngine(executor);

// Listen to task status changes
engine.on('taskStatusChanged', (task, status) => {
  console.log(`Task ${task.name} status: ${status}`);
});

// Set initial data and run
context.set('rawData', 'what is the weather today');
await engine.run(workflowDefinition);

// Get result
console.log(context.get('weatherInfo')); // { temperature: '25°C', condition: 'Sunny' }

Complex Example: Multi-Level Conditional Tasks

import type { DAGTask, ContextManager } from 'dag-workflow';

// Define tasks for different processing paths
class TaskA implements DAGTask {
  name = 'TaskA';
  async execute(input: TaskInput) {
    // Initial processing
    return { ...input, valueA: 'processed' };
  }
}

class TaskB implements DAGTask {
  name = 'TaskB';
  dependsOn = [taskA]; // Depends on TaskA
  async execute(input: TaskInput) {
    // Process path B
    return { ...input, valueB: 'processed' };
  }
}

class TaskC implements DAGTask {
  name = 'TaskC';
  dependsOn = [taskA]; // Depends on TaskA
  async execute(input: TaskInput) {
    // Process path C
    return { ...input, valueC: 'processed' };
  }
}

// Create conditional task
const conditionalTask = {
  name: 'ConditionalTask',
  dependsOn: [taskA],
  branches: [
    {
      condition: (ctx: ContextManager) => ctx.get('value') > 5,
      next: taskB,
    },
    {
      condition: (ctx: ContextManager) => ctx.get('value') <= 5,
      next: taskC,
    },
  ],
};

// Create DAG
const dag = {
  tasks: [taskA, conditionalTask, taskB, taskC],
};

// Run workflow
const context = new ContextManager();
context.set('value', 10); // This will trigger taskB path
const executor = new TaskExecutor(context);
const engine = new DAGWorkflowEngine(executor);
await engine.run(dag);

API Documentation

For detailed API documentation, please refer to API Documentation

Testing

pnpm test

Build

pnpm build

Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

MIT © NoteProtocol