npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

denise-graph-complex-js

v0.0.4

Published

graph theory utils

Readme

denise-is-complex

module to measure the complexity of a graph

Install

npm install --save denise-graph-complex-js

Usage

const {allPath, }
const data = [1, 1, 1, 1,
              0, 1, 0, 0,
              1, 0, 0, 0,
              0, 1, 0, 0];
const vertices = 4;
const result = [11, 21, 7, 7, 
                0, 4, 0, 0, 
                7, 10, 4, 4, 
                0, 4, 0, 0];
const all = allPath(data, vertices);
assert.deepEqual(all, result);

const data = [1, 1, 1, 1,
              0, 1, 0, 0,
              1, 0, 0, 0,
              0, 1, 0, 0];
const vertices = 4;
const result = [2.1818181818181817,2.3333333333333335,2.142857142857143,2.142857142857143,
                Infinity,1.75,Infinity,Infinity,
                2.142857142857143,2.5,2.25, 2.25,
                Infinity,1.75,Infinity,Infinity];
const all = meanPath(data, vertices);
assert.deepEqual(all, result);

const data = [1, 1, 1, 1,
              0, 1, 0, 0,
              1, 0, 0, 0,
              0, 1, 0, 0];
const dim = 4;
const result = [
                1,1,1,1,
                Infinity,1,Infinity,Infinity,
                1,2,2,2,
                Infinity,1,Infinity,Infinity 
                ];
result._isDistance = true
describe('distance ', () => {
  it('should return the matrix of distanceMin path possibles', () => {
    const distanceMin = distance(data, dim);
    assert.deepEqual(distanceMin, result);

API

meanPath(graph = [], vertices = 0) -> Array

return the mean path matrix for the graph given without passing twice by the same vertice.

allPath(graph = [], vertices = 0) -> Array

return the matrix with all paths possibles without passing twice by the same vertice.

getDistance(graph = [], vertices = 0) -> Array

return the matrix with distances between vertices without passing twice by the same vertice.

getEfficiency(graphDistance = [], vertices = 0)

return the graph efficiency of graph, the graphDistance must be the array returned by getDistance.

getLocalClustering(graph = [], vertices = 0) -> Array

return a array with local clustering.

getGlobalClustering(graphLocalClustering = [], vertices = 0)

return average of local clustering,the graphLocalClustering must be the array returned by getLocalClustering.

graph = [x_1, x_2, ... , x_vertXvert] where vert = #Vertices

She is Denise, my love, my wife, my world:

denise