explainai
v1.0.2
Published
Complete ExplainAI package - Interpret machine learning models visually and interactively, directly in JavaScript
Maintainers
Readme
ExplainAI
Interpret machine learning models visually and interactively, directly in JavaScript.
Overview
This is the complete ExplainAI package that includes all components:
- explainai-core - Core explainability algorithms (SHAP, LIME)
- explainai-ui - React visualization components
- explainai-node - Node.js CLI tools
Install this package to get everything at once, or install individual packages for more control.
Installation
npm install explainaiOr install individual packages:
# Just the core algorithms
npm install explainai-core
# Core + UI components
npm install explainai-core explainai-ui
# Node.js CLI tools
npm install explainai-nodeQuick Start
import { explain, createApiModel } from 'explainai';
import { FeatureImportanceChart } from 'explainai';
// Create a model
const model = createApiModel(
{ endpoint: 'http://localhost:3000/predict' },
{ inputShape: [10], outputShape: [1], modelType: 'regression' }
);
// Generate explanation
const explanation = await explain(model, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], {
method: 'shap',
config: { samples: 100 }
});
// Visualize (React)
<FeatureImportanceChart explanation={explanation} />Individual Packages
explainai-core
Core algorithms and model interfaces.
npm install explainai-coreexplainai-ui
React visualization components.
npm install explainai-uiPeer Dependencies: react@^18.0.0, react-dom@^18.0.0
explainai-node
Node.js CLI tools for command-line usage.
npm install -g explainai-node
# Use CLI
explainai explain --method shap --input data.json --endpoint http://localhost:3000/predictexplainai-playground
Interactive demo application (not included in this package, available separately).
npm install explainai-playgroundFeatures
- 🔍 Multiple Explainability Methods: SHAP, LIME, Grad-CAM, Integrated Gradients
- 🌐 Universal Model Support: TensorFlow.js, ONNX.js, REST APIs, custom implementations
- ⚡ High Performance: Optimized algorithms with WebAssembly acceleration
- 🎨 Rich Visualizations: Interactive React components
- 🔒 Privacy-First: Client-side processing, no data leaves your browser
- 📦 Modular: Use only what you need
Documentation
Use Cases
- Model Dashboards: Embed explainability in monitoring tools
- AI Product UIs: Help users understand AI decisions
- Compliance Auditing: Provide visual proof for regulatory requirements
- Education: Teach interpretability in interactive environments
- MLOps Integration: Automated bias and interpretability checks
Requirements
- Node.js ≥18.0.0
- React ≥18.0.0 (for UI components)
License
MIT - see LICENSE for details.
Contributing
We welcome contributions! Please see the Contributing Guide.
Author
Yash Gupta (@gyash1512)
