npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

foundry_llm_extraction

v2.4.7

Published

```ts import { Function, MediaItem, OntologyEditFunction, Query, Uses, Edits } from "@foundry/functions-api"; import { Objects, ScmePriceList } from "@foundry/ontology-api"; // extract function, assignToObject function, default system prompts for both mod

Readme

Usage

Works with images (PNG and JPEG) by providing them as input to the model and with documents by extracting text/doing OCR on them

import { Function, MediaItem, OntologyEditFunction, Query, Uses, Edits } from "@foundry/functions-api";
import { Objects, ScmePriceList } from "@foundry/ontology-api";
// extract function, assignToObject function, default system prompts for both modes
import { extract, assignToObject, SYSTEM_PROMPT, MD_SYSTEM_PROMPT } from "foundry_llm_extraction";
import { Gpt5mini } from "@foundry/languagemodelservice/models";
import { Uuid } from "@foundry/functions-utils";

export class MyFunctions {
    @Edits(ScmePriceList)
    @OntologyEditFunction()
    public async llmExtract(input: MediaItem): Promise<void> {
        let res = await extract({
            createChatVisionCompletion: Gpt5mini.createChatVisionCompletion,
            file: input,
            config: {
                jsonSchema: {
                    "type": "object",
                    "title": "ScmePriceList",
                    "properties": {
                        "applicableGlt": {
                            "anyOf": [
                                {
                                    "type": "string"
                                },
                                {
                                    "type": "null"
                                }
                            ],
                            "title": "Applicable Glt",
                            "description": "true/false only; specifies if this price point is applicable to GLT"
                        },
                        "applicableKlt": {
                            "anyOf": [
                                {
                                    "type": "string"
                                },
                                {
                                    "type": "null"
                                }
                            ],
                            "title": "Applicable Klt",
                            "description": "true/false only; specifies if this price point is applicable to KLT"
                        },
                        "contractId": {
                            "anyOf": [
                                {
                                    "type": "string"
                                },
                                {
                                    "type": "null"
                                }
                            ],
                            "title": "Contract Id"
                        },
                        "descriptionDe": {
                            "anyOf": [
                                {
                                    "type": "string"
                                },
                                {
                                    "type": "null"
                                }
                            ],
                            "title": "Description De"
                        },
                        "descriptionEn": {
                            "anyOf": [
                                {
                                    "type": "string"
                                },
                                {
                                    "type": "null"
                                }
                            ],
                            "title": "Description En"
                        },
                        "isOptional": {
                            "anyOf": [
                                {
                                    "type": "string"
                                },
                                {
                                    "type": "null"
                                }
                            ],
                            "title": "Is Optional",
                            "description": "true/false only"
                        },
                        "masterProcess": {
                            "anyOf": [
                                {
                                    "type": "string"
                                },
                                {
                                    "type": "null"
                                }
                            ],
                            "title": "Master Process"
                        },
                        "nightSurcharge": {
                            "anyOf": [
                                {
                                    "type": "number"
                                },
                                {
                                    "type": "null"
                                }
                            ],
                            "title": "Night Surcharge"
                        },
                        "priceEur": {
                            "anyOf": [
                                {
                                    "type": "number"
                                },
                                {
                                    "type": "null"
                                }
                            ],
                            "title": "Price Eur"
                        },
                        "specialCase": {
                            "anyOf": [
                                {
                                    "type": "string"
                                },
                                {
                                    "type": "null"
                                }
                            ],
                            "title": "Special Case",
                            "description": "true/false only; specifies if the price point is temporary"
                        },
                        "subprocess": {
                            "anyOf": [
                                {
                                    "type": "string"
                                },
                                {
                                    "type": "null"
                                }
                            ],
                            "title": "Subprocess"
                        },
                        "unit": {
                            "anyOf": [
                                {
                                    "type": "string"
                                },
                                {
                                    "type": "null"
                                }
                            ],
                            "title": "Unit"
                        }
                    },
                    "required": [
                        "applicableGlt",
                        "applicableKlt",
                        "contractId",
                        "descriptionDe",
                        "descriptionEn",
                        "isOptional",
                        "masterProcess",
                        "nightSurcharge",
                        "priceEur",
                        "specialCase",
                        "subprocess",
                        "unit"
                    ]
                } as const
            }
        });
        let obj = Objects.create().scmePriceList(Uuid.random());
        assignToObject(obj, res);
    }
}

If the LLM is misbehaving you can edit the json schema by adding titles, descriptions, etc. to help it understand what's going on. Same applies to potential Object Type -> Schema conversion errors (see below)

Parameters

type Parameters = {
    createChatVisionCompletion: ExtractFunction,
    file: MediaItem,
    config: {
        jsonSchema: JsonSchema,
        ocr?: boolean,
        systemPrompt?: string,
        modelParams?: ModelParameters,
        twoStageExtraction?: boolean,
        mdCreateChatVisionCompletion?: MdExtractFunction,
        mdSystemPrompt?: string,
        mdModelParams?: ModelParameters,
    }
}

createChatVisionCompletion: ExtractFunction: A createChatVisionCompletion function used for the extraction, such as Gpt5mini.createChatVisionCompletion

file: MediaItem: The file input to the function

config.jsonSchema: JsonSchema: The json schema to use to extract data from the file. Note: add as const at the end of the object in this parameter, then the return type of the function will be inferred properly

config.ocr?: boolean: Whether to use OCR for documents. if this is true, OCR is used, otherwise (and by default) programmatic text extraction is used. Does nothing if the file input is an image.

config.systemPrompt?: string: Option to customize the system prompt. It may include the %%schema%% string to mark where you want the schema to be placed. It is intended to be generic, and it is recommended to provide additional info via description fields in the schema instead.

config.modelParams?: ModelParameters: Option to provide model parameters (eg temperature, reasoning effort, etc), model dependent.

config.twoStageExtraction?: boolean: Two stage extraction mode. If this is true, first a markdown representation of the document is generated by an llm and then the markdown is processed into a json schema representation.

config.mdCreateChatVisionCompletion?: MdExtractFunction: createChatVisionCompletion for markdown extraction, by default the other one is used.

config.mdSystemPrompt?: string: An option to customize the markdown mode system prompt. You can import MD_SYSTEM_PROMPT (the default prompt) and add information pertinent to the specific document type.

config.mdModelParams?: ModelParameters: An option to provide model parameters for markdown mode. If no mdCreateChatVisionCompletion is specified, modelParams is used by default.

Execute this in console to extract the JSON Schema from an Object Type when on its page

let body = "{\"objectTypes\":[{\"identifier\":{\"objectTypeId\":\"" + 
        location.pathname.split("/workspace/ontology/object-type/")[1].split("/")[0] + 
        "\",\"type\":\"objectTypeId\"}";
if (localStorage["@foundry/ontology/vv/13/ontologyBranchIdentifier"] && JSON.parse(localStorage["@foundry/ontology/vv/13/ontologyBranchIdentifier"])?.value) body += ",\"versionReference\":{\"type\":\"ontologyBranch\",\"ontologyBranch\":\"" +
        JSON.parse(localStorage["@foundry/ontology/vv/13/ontologyBranchIdentifier"]).value.ontologyBranchRid +
        "\"}"
body += "}],\"datasourceTypes\":[\"DATASET\",\"RESTRICTED_VIEW\",\"TIME_SERIES\",\"STREAM\",\"STREAM_V2\",\"STREAM_V3\",\"DATASET_V2\",\"RESTRICTED_VIEW_V2\",\"RESTRICTED_STREAM\",\"MEDIA\",\"MEDIA_SET_VIEW\",\"GEOTIME_SERIES\",\"TABLE\",\"EDITS_ONLY\",\"DIRECT\",\"DERIVED\",\"DATASET_V3\"],\"linkTypes\":[],\"sharedPropertyTypes\":[],\"interfaceTypes\":[],\"typeGroups\":[],\"actionTypes\":[],\"loadRedacted\":true,\"includeObjectTypesWithoutSearchableDatasources\":true,\"includeEntityMetadata\":true}"

let response = await fetch("/ontology-metadata/api/ontology/ontology/bulkLoadEntities", {
    "headers": {
      "accept": "application/json",
      "accept-conjure-error-parameter-format": "JSON",
      "authorization": "Bearer " + document.cookie.split(";").map(i => i.split("=")).find(i => i[0] === "PALANTIR_TOKEN")[1],
      "cache-control": "no-cache",
      "content-type": "application/json",
      "pragma": "no-cache",
    },
    body,
    "method": "POST",
    "mode": "cors",
    "credentials": "include"
  }).then(it => it.json());

function objectTypeToSchema(obj) {
    function typeToSchema(type) {
        if (type.type === "string") {
            return { type: "string" };
        }
        if (type.type === "integer" || type.type === "long") {
            return { type: "integer" };
        }
        if (type.type === "double" || type.type === "float") {
            return { type: "number" };
        }
        if (type.type === "decimal") {
            throw new Error("Decimal type not supported in TypeScript v1");
        }
        if (type.type === "geohash") {
            return { type: "string", description: "Format: $lat,$lon" };
        }
        if (type.type === "boolean") {
            return { type: "boolean" };
        }
        if (type.type === "date") {
            return { type: "string", format: "date" };
        }
        if (type.type === "timestamp") {
            return { type: "string", format: "date-time" };
        }
        throw new Error("Unsupported type " + type.type);
    }
    const res = {
        type: "object",
        title: obj.apiName,
        properties: {},
        required: [],
    };
    for (const [rid, property] of Object.entries(obj.propertyTypes)) {
        if (obj.primaryKeys.includes(rid)) continue;
        let newProp = typeToSchema(property.type);
        if (!property.dataConstraints?.nullabilityV2?.noNulls) {
            newProp = { anyOf: [newProp, { type: "null" }] };
        }
        if (property.displayMetadata) {
            newProp.title = property.displayMetadata.displayName;
        }
        res.required.push(property.apiName);
        res.properties[property.apiName] = newProp;
    }
    return res;
}

objectTypeToSchema(response.objectTypes[0].objectType)