npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

fp-tools

v3.0.0

Published

javascript functional programming utilities

Downloads

29

Readme

fp-tools

Functions, Algebraic Structures, and Pointfree Utilities from Professor Frisby's Mostly Adequate Guide to FP.

Some functions may be missing or renamed. Only Algebraic structures currently are Either (Left, Right), IO, Maybe, and Task. Some functions have been added like gt/gte/lt/lte because the ramda implementation hurts me.

Appendix A: Essential Functions Support

In this appendix, you'll find some basic JavaScript implementations of various functions described in the book. Keep in mind that these implementations may not be the fastest or the most efficient implementation out there; they solely serve an educational purpose.

In order to find functions that are more production-ready, have a peek at ramda, lodash, or folktale.

Note that some functions also refer to algebraic structures defined in the Appendix B

always

// always :: a -> b -> a
const always = curry((a, b) => a);

compose

// compose :: ((a -> b), (b -> c), ..., (y -> z)) -> a -> z
const compose = (...fns: any) => (...args: any) =>
  fns.reduceRight((res: any, fn: any) => [fn.call(null, ...res)], args)[0];

curry

// curry :: ((a, b, ...) -> c) -> a -> b -> ... -> c
function curry(fn: (...args: any) => any) {
  const arity = fn.length;

  return function $curry(...args: any): any {
    if (args.length < arity) {
      return $curry.bind(null, ...args);
    }

    return fn.call(null, ...args);
  };
}

either

// either :: (a -> c) -> (b -> c) -> Either a b -> c
const either = curry((f, g, e) => {
  if (e.isLeft) {
    return f(e.$value);
  }
  return g(e.$value);
});

identity

// identity :: x -> x
const identity = (x) => x;

inspect

export const inspect = (x: any) => {
  if (x && typeof x.inspect === 'function') {
    return x.inspect();
  }
  function inspectFn(f: any) {
    return f.name ? f.name : f.toString();
  }
  function inspectTerm(t: any): any {
    switch (typeof t) {
      case 'string':
        return `'${t}'`;
      case 'object': {
        const ts = Object.keys(t).map((k) => [k, inspect(t[k])]);
        return `{${ts.map((kv) => kv.join(': ')).join(', ')}}`;
      }
      default:
        return String(t);
    }
  }
  function inspectArgs(args: any): any {
    return Array.isArray(args)
      ? `[${args.map(inspect).join(', ')}]`
      : inspectTerm(args);
  }
  return typeof x === 'function' ? inspectFn(x) : inspectArgs(x);
};

left

// left :: a -> Either a b
const left = (a) => new Left(a);

liftA2

// liftA2 :: (Applicative f) => (a1 -> a2 -> b) -> f a1 -> f a2 -> f b
const liftA2 = curry((fn, a1, a2) => a1.map(fn).ap(a2));

liftA3

// liftA3 :: (Applicative f) => (a1 -> a2 -> a3 -> b) -> f a1 -> f a2 -> f a3 -> f b
const liftA3 = curry((fn, a1, a2, a3) => a1.map(fn).ap(a2).ap(a3));

maybe

// maybe :: b -> (a -> b) -> Maybe a -> b
const maybe = curry((v, f, m) => {
  if (m.isNothing) {
    return v;
  }
  return f(m.$value);
});

nothing

// nothing :: Maybe a
const nothing = Maybe.of(null);

reject

// reject :: a -> Task a b
const reject = (a) => Task.rejected(a);

Appendix B: Algebraic Structures Support

In this appendix, you'll find some basic JavaScript implementations of various algebraic structures described in the book. Keep in mind that these implementations may not be the fastest or the most efficient implementation out there; they solely serve an educational purpose.

In order to find structures that are more production-ready, have a peek at folktale or fantasy- land.

Note that some methods also refer to functions defined in the Appendix A

Compose

const createCompose = curry(
  (F, G) =>
    class Compose {
      constructor(x) {
        this.$value = x;
      }
      [util.inspect.custom]() {
        return `Compose(${inspect(this.$value)})`;
      }
      // ----- Pointed (Compose F G)
      static of(x) {
        return new Compose(F(G(x)));
      }
      // ----- Functor (Compose F G)
      map(fn) {
        return new Compose(this.$value.map((x) => x.map(fn)));
      }
      // ----- Applicative (Compose F G)
      ap(f) {
        return f.map(this.$value);
      }
    },
);

Either

class Either {
  constructor(x) {
    this.$value = x;
  }
  // ----- Pointed (Either a)
  static of(x) {
    return new Right(x);
  }
}

Left

class Left extends Either {
  get isLeft() {
    return true;
  }
  get isRight() {
    return false;
  }
  static of(x) {
    throw new Error(
      '`of` called on class Left (value) instead of Either (type)',
    );
  }
  [util.inspect.custom]() {
    return `Left(${inspect(this.$value)})`;
  }
  // ----- Functor (Either a)
  map() {
    return this;
  }
  // ----- Applicative (Either a)
  ap() {
    return this;
  }
  // ----- Monad (Either a)
  chain() {
    return this;
  }
  join() {
    return this;
  }
  // ----- Traversable (Either a)
  sequence(of) {
    return of(this);
  }
  traverse(of, fn) {
    return of(this);
  }
}

Right

class Right extends Either {
  get isLeft() {
    return false;
  }
  get isRight() {
    return true;
  }
  static of(x) {
    throw new Error(
      '`of` called on class Right (value) instead of Either (type)',
    );
  }
  [util.inspect.custom]() {
    return `Right(${inspect(this.$value)})`;
  }
  // ----- Functor (Either a)
  map(fn) {
    return Either.of(fn(this.$value));
  }
  // ----- Applicative (Either a)
  ap(f) {
    return f.map(this.$value);
  }
  // ----- Monad (Either a)
  chain(fn) {
    return fn(this.$value);
  }
  join() {
    return this.$value;
  }
  // ----- Traversable (Either a)
  sequence(of) {
    return this.traverse(of, identity);
  }
  traverse(of, fn) {
    fn(this.$value).map(Either.of);
  }
}

Identity

class Identity {
  constructor(x) {
    this.$value = x;
  }
  [util.inspect.custom]() {
    return `Identity(${inspect(this.$value)})`;
  }
  // ----- Pointed Identity
  static of(x) {
    return new Identity(x);
  }
  // ----- Functor Identity
  map(fn) {
    return Identity.of(fn(this.$value));
  }
  // ----- Applicative Identity
  ap(f) {
    return f.map(this.$value);
  }
  // ----- Monad Identity
  chain(fn) {
    return this.map(fn).join();
  }
  join() {
    return this.$value;
  }
  // ----- Traversable Identity
  sequence(of) {
    return this.traverse(of, identity);
  }
  traverse(of, fn) {
    return fn(this.$value).map(Identity.of);
  }
}

IO

class IO {
  constructor(fn) {
    this.unsafePerformIO = fn;
  }
  [util.inspect.custom]() {
    return 'IO(?)';
  }
  // ----- Pointed IO
  static of(x) {
    return new IO(() => x);
  }
  // ----- Functor IO
  map(fn) {
    return new IO(compose(fn, this.unsafePerformIO));
  }
  // ----- Applicative IO
  ap(f) {
    return this.chain((fn) => f.map(fn));
  }
  // ----- Monad IO
  chain(fn) {
    return this.map(fn).join();
  }
  join() {
    return new IO(() => this.unsafePerformIO().unsafePerformIO());
  }
}

List

class List {
  constructor(xs) {
    this.$value = xs;
  }
  [util.inspect.custom]() {
    return `List(${inspect(this.$value)})`;
  }
  concat(x) {
    return new List(this.$value.concat(x));
  }
  // ----- Pointed List
  static of(x) {
    return new List([x]);
  }
  // ----- Functor List
  map(fn) {
    return new List(this.$value.map(fn));
  }
  // ----- Traversable List
  sequence(of) {
    return this.traverse(of, identity);
  }
  traverse(of, fn) {
    return this.$value.reduce(
      (f, a) =>
        fn(a)
          .map((b) => (bs) => bs.concat(b))
          .ap(f),
      of(new List([])),
    );
  }
}

Map

class Map {
  constructor(x) {
    this.$value = x;
  }
  [util.inspect.custom]() {
    return `Map(${inspect(this.$value)})`;
  }
  insert(k, v) {
    const singleton = {};
    singleton[k] = v;
    return Map.of(Object.assign({}, this.$value, singleton));
  }
  reduceWithKeys(fn, zero) {
    return Object.keys(this.$value).reduce(
      (acc, k) => fn(acc, this.$value[k], k),
      zero,
    );
  }
  // ----- Functor (Map a)
  map(fn) {
    return this.reduceWithKeys((m, v, k) => m.insert(k, fn(v)), new Map({}));
  }
  // ----- Traversable (Map a)
  sequence(of) {
    return this.traverse(of, identity);
  }
  traverse(of, fn) {
    return this.reduceWithKeys(
      (f, a, k) =>
        fn(a)
          .map((b) => (m) => m.insert(k, b))
          .ap(f),
      of(new Map({})),
    );
  }
}

Maybe

Note that Maybe two child classes could also be defined in a similar fashion as we did for Just and Nothing Either with. This is simply a different flavor.

class Maybe {
  get isNothing() {
    return this.$value === null || this.$value === undefined;
  }
  get isJust() {
    return !this.isNothing;
  }
  constructor(x) {
    this.$value = x;
  }
  [util.inspect.custom]() {
    return this.isNothing ? 'Nothing' : `Just(${inspect(this.$value)})`;
  }
  // ----- Pointed Maybe
  static of(x) {
    return new Maybe(x);
  }
  // ----- Functor Maybe
  map(fn) {
    return this.isNothing ? this : Maybe.of(fn(this.$value));
  }
  // ----- Applicative Maybe
  ap(f) {
    return this.isNothing ? this : f.map(this.$value);
  }
  // ----- Monad Maybe
  chain(fn) {
    return this.map(fn).join();
  }
  join() {
    return this.isNothing ? this : this.$value;
  }
  // ----- Traversable Maybe
  sequence(of) {
    return this.traverse(of, identity);
  }
  traverse(of, fn) {
    return this.isNothing ? of(this) : fn(this.$value).map(Maybe.of);
  }
}

Task

class Task {
  fork: any;
  constructor(fork: any) {
    this.fork = fork;
  }

  [util.inspect.custom]() {
    return 'Task(?)';
  }

  static rejected(x: any) {
    return new Task((rej: any, _: any) => rej(x));
  }

  // ----- Pointed (Task a)
  static of(x: any) {
    return new Task((_: any, resolve: any) => resolve(x));
  }

  // ----- anytor (Task a)
  map(fn: any) {
    return new Task((rej: any, resolve: any) =>
      this.fork(rej, compose(resolve, fn)),
    );
  }

  // ----- Applicative (Task a)
  ap(f: any) {
    return this.chain((fn: any) => f.map(fn));
  }

  // ----- Monad (Task a)
  chain(fn: any) {
    return new Task((rej: any, resolve: any) =>
      this.fork(rej, (x: any) => fn(x).fork(rej, resolve)),
    );
  }

  join() {
    return this.chain(identity);
  }
}

Appendix C: Pointfree Utilities

In this appendix, you'll find pointfree versions of rather classic JavaScript functions described in the book. All of the following functions are seemingly available in exercises, as part of the global context. Keep in mind that these implementations may not be the fastest or the most efficient implementation out there; they solely serve an educational purpose. In order to find functions that are more production-ready, have a peek at ramda, lodash, or folktale.

Note that functions refer to the curry & compose functions defined in Appendix A.

add

// add :: Number -> Number -> Number
const add = curry((a, b) => a + b);

append

// append :: String -> String -> String
const append = flip(concat);

chain

// chain :: Monad m => (a -> m b) -> m a -> m b
const chain = curry((fn, m) => m.chain(fn));

concat

// concat :: String -> String -> String
const concat = curry((a, b) => a.concat(b));

eq

// eq :: Eq a => a -> a -> Boolean
const eq = curry((a, b) => a === b);

filter

// filter :: (a -> Boolean) -> [a] -> [a]
const filter = curry((fn, xs) => xs.filter(fn));

flip

// flip :: (a -> b -> c) -> b -> a -> c
const flip = curry((fn, a, b) => fn(b, a));

forEach

// forEach :: (a -> ()) -> [a] -> ()
const forEach = curry((fn, xs) => xs.forEach(fn));

head

// head :: [a] -> a
const head = (xs) => xs[0];

intercalate

// intercalate :: String -> [String] -> String
const intercalate = curry((str, xs) => xs.join(str));

join

// join :: Monad m => m (m a) -> m a
const join = (m) => m.join();

last

// last :: [a] -> a
const last = (xs) => xs[xs.length - 1];

map

// map :: Functor f => (a -> b) -> f a -> f b
const map = curry((fn, f) => f.map(fn));

match

// match :: RegExp -> String -> Boolean
const match = curry((re, str) => re.test(str));

prop

// prop :: String -> Object -> a
const prop = curry((p, obj) => obj[p]);

reduce

// reduce :: (b -> a -> b) -> b -> [a] -> b
const reduce = curry((fn, zero, xs) => xs.reduce(fn, zero));

replace

// replace :: RegExp -> String -> String -> String
const replace = curry((re, rpl, str) => str.replace(re, rpl));

reverse

// reverse :: [a] -> [a]
const reverse = (x: any) =>
  Array.isArray(x) ? x.reverse() : x.split('').reverse().join('');

safeHead

// safeHead :: [a] -> Maybe a
const safeHead = compose(Maybe.of, head);

safeLast

// safeLast :: [a] -> Maybe a
const safeLast = compose(Maybe.of, last);

safeProp

// safeProp :: String -> Object -> Maybe a
const safeProp = curry((p, obj) => compose(Maybe.of, prop(p))(obj));

sequence

// sequence :: (Applicative f, Traversable t) => (a -> f a) -> t (f a) -> f (t a)
const sequence = curry((of, f) => f.sequence(of));

sortBy

// sortBy :: Ord b => (a -> b) -> [a] -> [a]
const sortBy = curry((fn, xs) =>
  xs.sort((a, b) => {
    if (fn(a) === fn(b)) {
      return 0;
    }
    return fn(a) > fn(b) ? 1 : -1;
  }),
);

split

// split :: String -> String -> [String]
const split = curry((sep, str) => str.split(sep));

take

// take :: Number -> [a] -> [a]
const take = curry((n, xs) => xs.slice(0, n));

toLowerCase

// toLowerCase :: String -> String
const toLowerCase = (s) => s.toLowerCase();

toString

// toString :: a -> String
const toString = String;

toUpperCase

// toUpperCase :: String -> String
const toUpperCase = (s) => s.toUpperCase();

traverse

// traverse :: (Applicative f, Traversable t) => (a -> f a) -> (a -> f b) -> t a -> f (t b)
const traverse = curry((of, fn, f) => f.traverse(of, fn));

unsafePerformIO

// unsafePerformIO :: IO a -> a
const unsafePerformIO = (io) => io.unsafePerformIO();