npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

genetic-algorithm-toolkit

v1.0.1

Published

******Lightweight toolkit for genetic algorithm processes using a binary genome representation******

Readme

Lightweight toolkit for genetic algorithm processes using a binary genome representation

This is a very simple process but can be a very powerful tool to solve multi-objective combinatorial optimisation problems (mocops).

Import the genetic algorith toolkit.

const ga = require('./ga_engine');

Define the likelihood of a crossover of genes between each genome pair selected to create each new generation genepool.

const crossoverRate = 0.6;
const mutationRate = 0.08;

Initialise random genepool (In this example the length of our genome is 32 - length is number of bits as its binary)

let genepool = ga.initialiseGenepool(32, []);

Here a fitness function is defined to determine the fitnesss/usefulness of a given genome/solution.

let fitnessFunction = (g) => parseInt(g, 2);

In this example the fitness function just converts the binary genome in to a number and considers a higher number to have a higher fitness value.

The fitness function can then be used to determine the effectiveness of each genome in the genepool.

genepool = ga.determineFitnessOfEachGenomeInGenepool(genepool, fitnessFunction);
genepool = ga.assignRelativeFitnessPercentagesToGenepool(genepool);

Calculate initial total fitness of entire genepool

let initialFitnessOfGenepool = ga.summedFitnessOfGenepool(genepool);

let numGenerationsToRun = 100;

Now the initial population has bee generated, loop for n generations before examining results

let finalTotalFitness;
for(let i = 0; i <= numGenerationsToRun; i++) {
    // create new generation
    genepool = ga.selectNextGenGenepool(genepool, [], crossoverRate);

    // for each genome maybe mutate
    genepool.map((g) => {
        let rand = Math.random();
        if (rand > 0 && rand < mutationRate) return ga.mutateGenome(g);
    });

    genepool = ga.assignRelativeFitnessPercentagesToGenepool(
        ga.determineFitnessOfEachGenomeInGenepool(genepool, fitnessFunction));

    finalTotalFitness = ga.summedFitnessOfGenepool(genepool);
}

Now, in this very simple example we have cycled through 100 generations of 'determine usefullness of genes/solutions', 'create new genepool with generally high quality genomes/solutions' and 'randomly breed together pairs of some genomes and maybe mutate randomly - according to the defined crossover and mutation rates'. Now we can display the original overall fitness of the population and the resulting fitness after 100 generations.

process.stdout.write('The combined fitness of the genomes in the original population was: ' +
    initialFitnessOfGenepool + '. After ' + numGenerationsToRun +
    ' generations this has now become ' +
    finalTotalFitness + '.');
    

In a real life example we might itterate through this process many times, constantly testing the validity of the solutions. Usually the fitness of a genome would be determined by a custom function that might perhaps treat specific bits in the binary genome as characteristics of some abstract concept.