genkitx-qdrant
v0.3.2
Published
Genkit AI framework plugin for the Qdrant vector database.
Maintainers
Readme
Qdrant plugin
The Qdrant plugin provides Genkit indexer and retriever implementations in JS and Go that use the Qdrant.
Installation
npm i genkitx-qdrantConfiguration
To use this plugin, specify it when you call configureGenkit():
import { qdrant } from 'genkitx-qdrant';
const ai = genkit({
plugins: [
qdrant([
{
embedder: googleAI.embedder('text-embedding-004'),
collectionName: 'collectionName',
clientParams: {
url: 'http://localhost:6333',
},
},
]),
],
});You'll need to specify a collection name, the embedding model you want to use and the Qdrant client parameters. In addition, there are a few optional parameters:
embedderOptions: Additional options to pass options to the embedder:embedderOptions: { taskType: 'RETRIEVAL_DOCUMENT' },contentPayloadKey: Name of the payload filed with the document content. Defaults to "content".contentPayloadKey: 'content';metadataPayloadKey: Name of the payload filed with the document metadata. Defaults to "metadata".metadataPayloadKey: 'metadata';dataTypePayloadKey: Name of the payload filed with the document datatype. Defaults to "_content_type".dataTypePayloadKey: '_datatype';collectionCreateOptions: Additional options when creating the Qdrant collection.
Usage
Import retriever and indexer references like so:
import { qdrantIndexerRef, qdrantRetrieverRef } from 'genkitx-qdrant';Then, pass the references to retrieve() and index():
// To export an indexer:
export const qdrantIndexer = qdrantIndexerRef('collectionName', 'displayName');// To export a retriever:
export const qdrantRetriever = qdrantRetrieverRef(
'collectionName',
'displayName',
);You can refer to Retrieval-augmented generation for a general discussion on indexers and retrievers.
