npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

grok-mcp

v1.0.1

Published

MCP server for Grok AI API integration

Readme

Grok MCP Plugin

npm version Smithery Build Status

A Model Context Protocol (MCP) plugin that provides seamless access to Grok AI's powerful capabilities directly from Cline.

Features

This plugin exposes three powerful tools through the MCP interface:

  1. Chat Completion - Generate text responses using Grok's language models
  2. Image Understanding - Analyze images with Grok's vision capabilities
  3. Function Calling - Use Grok to call functions based on user input

Prerequisites

  • Node.js (v16 or higher)
  • A Grok AI API key (obtain from console.x.ai)
  • Cline with MCP support

Installation

  1. Clone this repository:

    git clone https://github.com/Bob-lance/grok-mcp.git
    cd grok-mcp
  2. Install dependencies:

    npm install
  3. Build the project:

    npm run build
  4. Add the MCP server to your Cline MCP settings:

    For VSCode Cline extension, edit the file at:

    ~/Library/Application Support/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json

    Add the following configuration:

    {
      "mcpServers": {
        "grok-mcp": {
          "command": "node",
          "args": ["/path/to/grok-mcp/build/index.js"],
          "env": {
            "XAI_API_KEY": "your-grok-api-key"
          },
          "disabled": false,
          "autoApprove": []
        }
      }
    }

    Replace /path/to/grok-mcp with the actual path to your installation and your-grok-api-key with your Grok AI API key.

Usage

Once installed and configured, the Grok MCP plugin provides three tools that can be used in Cline:

Chat Completion

Generate text responses using Grok's language models:

<use_mcp_tool>
<server_name>grok-mcp</server_name>
<tool_name>chat_completion</tool_name>
<arguments>
{
  "messages": [
    {
      "role": "system",
      "content": "You are a helpful assistant."
    },
    {
      "role": "user",
      "content": "Hello, what can you tell me about Grok AI?"
    }
  ],
  "temperature": 0.7
}
</arguments>
</use_mcp_tool>

Image Understanding

Analyze images with Grok's vision capabilities:

<use_mcp_tool>
<server_name>grok-mcp</server_name>
<tool_name>image_understanding</tool_name>
<arguments>
{
  "image_url": "https://example.com/image.jpg",
  "prompt": "What is shown in this image?"
}
</arguments>
</use_mcp_tool>

You can also use base64-encoded images:

<use_mcp_tool>
<server_name>grok-mcp</server_name>
<tool_name>image_understanding</tool_name>
<arguments>
{
  "base64_image": "base64-encoded-image-data",
  "prompt": "What is shown in this image?"
}
</arguments>
</use_mcp_tool>

Function Calling

Use Grok to call functions based on user input:

<use_mcp_tool>
<server_name>grok-mcp</server_name>
<tool_name>function_calling</tool_name>
<arguments>
{
  "messages": [
    {
      "role": "user",
      "content": "What's the weather like in San Francisco?"
    }
  ],
  "tools": [
    {
      "type": "function",
      "function": {
        "name": "get_weather",
        "description": "Get the current weather in a given location",
        "parameters": {
          "type": "object",
          "properties": {
            "location": {
              "type": "string",
              "description": "The city and state, e.g. San Francisco, CA"
            },
            "unit": {
              "type": "string",
              "enum": ["celsius", "fahrenheit"],
              "description": "The unit of temperature to use"
            }
          },
          "required": ["location"]
        }
      }
    }
  ]
}
</arguments>
</use_mcp_tool>

API Reference

Chat Completion

Generate a response using Grok AI chat completion.

Parameters:

  • messages (required): Array of message objects with role and content
  • model (optional): Grok model to use (defaults to grok-3-mini-beta)
  • temperature (optional): Sampling temperature (0-2, defaults to 1)
  • max_tokens (optional): Maximum number of tokens to generate (defaults to 16384)

Image Understanding

Analyze images using Grok AI vision capabilities.

Parameters:

  • prompt (required): Text prompt to accompany the image
  • image_url (optional): URL of the image to analyze
  • base64_image (optional): Base64-encoded image data (without the data:image prefix)
  • model (optional): Grok vision model to use (defaults to grok-2-vision-latest)

Note: Either image_url or base64_image must be provided.

Function Calling

Use Grok AI to call functions based on user input.

Parameters:

  • messages (required): Array of message objects with role and content
  • tools (required): Array of tool objects with type, function name, description, and parameters
  • tool_choice (optional): Tool choice mode (auto, required, none, defaults to auto)
  • model (optional): Grok model to use (defaults to grok-3-mini-beta)

Development

Project Structure

  • src/index.ts - Main server implementation
  • src/grok-api-client.ts - Grok API client implementation

Building

npm run build

Running

XAI_API_KEY="your-grok-api-key" node build/index.js

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgements