hexgenerative-ai
v1.1.0
Published
Official Node.js SDK for Hexa AI - Lightning-Fast AI API
Maintainers
Readme
Hexa Generative AI - Node.js SDK
Official Node.js/TypeScript client for Hexa AI API.
Installation
npm install hexgenerative-ai
# or
yarn add hexgenerative-ai
# or
pnpm add hexgenerative-aiQuick Start
import HexaAI from "hexgenerative-ai";
const client = new HexaAI({
apiKey: "hgx-your-api-key",
});
async function main() {
const response = await client.chat.completions.create({
model: "hexa-pro",
messages: [
{ role: "user", content: "Explain quantum computing in simple terms" },
],
});
console.log(response.choices[0].message.content);
}
main();Available Models
| Model | Description | Best For |
|-------|-------------|----------|
| hexa-instant | Fastest model | Quick responses |
| hexa-balanced | General purpose | Most use cases |
| hexa-reasoning | Deep analysis | Complex reasoning |
| hexa-advanced | Coding expert | Programming |
| hexa-pro | Premium quality | Best results |
| hexa-vision-scout | Vision model | Images |
Smart Routing
// By task type
const response = await client.chat.completions.create({
task: "coding",
messages: [{ role: "user", content: "Write a function" }],
});
// By optimization
const response = await client.chat.completions.create({
optimize_for: "speed",
messages: [{ role: "user", content: "Quick answer" }],
});
// Auto-select
const response = await client.chat.completions.create({
auto_select: true,
messages: [{ role: "user", content: "Your message" }],
});Error Handling
import HexaAI, { HexaAIError } from "hexgenerative-ai";
const client = new HexaAI({ apiKey: "hgx-your-key" });
try {
const response = await client.chat.completions.create({
model: "hexa-pro",
messages: [{ role: "user", content: "Hello" }],
});
} catch (error) {
if (error instanceof HexaAIError) {
console.log("Error:", error.message);
console.log("Status:", error.statusCode);
}
}TypeScript Support
Full TypeScript support with type definitions included.
import HexaAI, { ChatMessage, ChatCompletion } from "hexgenerative-ai";
const messages: ChatMessage[] = [
{ role: "system", content: "You are a helpful assistant" },
{ role: "user", content: "Hello!" },
];
const response: ChatCompletion = await client.chat.completions.create({
model: "hexa-pro",
messages,
});Agentic Features
Agent Tasks
const result = await client.agent.run({
task: "Research AI trends and summarize",
model: "hexa-ultra",
});
console.log(result);RAG (Knowledge Base)
// Upload document
await client.rag.upload({
title: "Company Policy",
content: "Employees get 30 days leave...",
});
// Search
const results = await client.rag.search({ query: "leave policy" });Context Management (300K Tokens)
const session = await client.context.create({
system_prompt: "You are a helpful assistant",
});
await client.context.add(session.data.session_id, {
role: "user",
content: "Hello!",
});Code Execution
const result = await client.code.execute({
code: "print(sum(range(100)))",
});
console.log(result.data.output);Tools
const tools = await client.tools.list();
console.log(`Found ${tools.data.count} tools`);License
MIT
