npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

huggingface-transformers-react

v1.0.0

Published

A React provider and hooks for using Hugging Face Transformers.js in React applications with built-in loading states, error handling, and Suspense support

Readme

🤗 Hugging Face Transformers React

npm version License: MIT TypeScript React

A React provider and hooks for seamlessly integrating Hugging Face Transformers.js into your React applications. This library provides intelligent loading states, error handling, model caching, and React Suspense support out of the box.

✨ Features

  • 🚀 Easy Integration: Drop-in React provider with zero configuration
  • 🔄 Intelligent Loading: Automatic retry logic with exponential backoff
  • 💾 Model Caching: Efficient model lifecycle management
  • Suspense Ready: Built-in React Suspense support for smooth UX
  • 🛡️ Error Handling: Comprehensive error boundaries and recovery
  • 🎵 Audio Processing: Automatic audio format conversion for Whisper models
  • 🔒 TypeScript: Full TypeScript support with detailed type definitions
  • 🌐 SSR Compatible: Server-side rendering friendly
  • 📦 Tree Shakable: Optimized bundle size with ES modules
  • 🎛️ Configurable: Customizable loading timeouts, retry logic, and more

📦 Installation

npm install huggingface-transformers-react
yarn add huggingface-transformers-react
pnpm add huggingface-transformers-react

🚀 Quick Start

Basic Setup

Wrap your app with the TransformersProvider:

import React from 'react';
import { TransformersProvider } from 'huggingface-transformers-react';
import App from './App';

function Root() {
  return (
    <TransformersProvider>
      <App />
    </TransformersProvider>
  );
}

export default Root;

Using the Hook

import React, { useEffect, useState } from 'react';
import { useTransformers } from 'huggingface-transformers-react';

function SentimentAnalyzer() {
  const { libraryStatus, analyzeSentiment } = useTransformers();
  const [result, setResult] = useState(null);
  const [text, setText] = useState('I love this library!');

  const handleAnalyze = async () => {
    if (libraryStatus === 'ready') {
      const sentiment = await analyzeSentiment(text);
      setResult(sentiment);
    }
  };

  return (
    <div>
      <textarea 
        value={text} 
        onChange={(e) => setText(e.target.value)}
        placeholder="Enter text to analyze..."
      />
      <button 
        onClick={handleAnalyze} 
        disabled={libraryStatus !== 'ready'}
      >
        {libraryStatus === 'loading' ? 'Loading AI...' : 'Analyze Sentiment'}
      </button>
      {result && (
        <div>
          <strong>Sentiment:</strong> {result[0].label} ({result[0].score.toFixed(2)})
        </div>
      )}
    </div>
  );
}

With React Suspense

For the smoothest user experience, use with React Suspense:

import React, { Suspense } from 'react';
import { TransformersProvider, useTransformersReady, useTransformers } from 'huggingface-transformers-react';

function AIFeature() {
  useTransformersReady(); // This will suspend until ready
  const { analyzeSentiment } = useTransformers();
  
  // Component will only render when transformers is ready
  return (
    <div>
      <h2>AI-Powered Features</h2>
      {/* Your AI features here */}
    </div>
  );
}

function App() {
  return (
    <TransformersProvider>
      <Suspense fallback={<div>🤖 Loading AI models...</div>}>
        <AIFeature />
      </Suspense>
    </TransformersProvider>
  );
}

📖 API Reference

<TransformersProvider>

The main provider component that manages the Transformers.js library.

Props

| Prop | Type | Default | Description | |------|------|---------|-------------| | children | ReactNode | - | React children to render | | moduleUrl | string | CDN URL | Custom URL for the transformers library | | loadTimeout | number | 60000 | Timeout in milliseconds for loading | | maxRetries | number | 3 | Maximum retry attempts | | nonce | string | - | CSP nonce for script tags | | onLibraryError | (error: Error) => void | - | Library loading error callback | | onModelError | (modelId: string, error: Error) => void | - | Model loading error callback |

Example with Custom Configuration

<TransformersProvider
  moduleUrl="/static/transformers.esm.js"
  loadTimeout={30000}
  maxRetries={5}
  nonce={cspNonce}
  onLibraryError={(error) => console.error('Library failed:', error)}
  onModelError={(modelId, error) => console.error(`Model ${modelId} failed:`, error)}
>
  <App />
</TransformersProvider>

useTransformers()

Hook to access the transformers context and functionality.

Returns

interface TransformersContextValue {
  // Library State
  isLibraryLoaded: boolean;
  libraryStatus: 'idle' | 'loading' | 'ready' | 'error';
  libraryError: Error | null;
  
  // Model State
  models: Record<string, any>;
  modelStatus: Record<string, ModelStatus>;
  modelErrors: Record<string, Error | null>;
  
  // Actions
  loadModel: <T>(modelId: string, task?: string, retry?: number) => Promise<T>;
  unloadModel: (modelId: string) => void;
  analyzeSentiment: (text: string, customModel?: string, options?: any) => Promise<SentimentResult[]>;
  transcribeAudio: (audio: Blob | File, options?: any) => Promise<{ text: string }>;
  
  // Suspense
  readyPromise: Promise<void>;
}

useTransformersReady()

Suspense-friendly hook that suspends rendering until the library is ready.

function MyAIComponent() {
  useTransformersReady(); // Suspends until ready
  const { analyzeSentiment } = useTransformers();
  
  // Safe to use AI features here
  return <div>AI features ready!</div>;
}

🎯 Advanced Usage

Custom Models

Load and use custom models for specific tasks:

function CustomModelExample() {
  const { loadModel, libraryStatus } = useTransformers();
  const [result, setResult] = useState(null);

  const useCustomModel = async () => {
    if (libraryStatus === 'ready') {
      // Load a specific model
      const classifier = await loadModel(
        'cardiffnlp/twitter-roberta-base-sentiment-latest',
        'sentiment-analysis'
      );
      
      const result = await classifier('This is amazing!');
      setResult(result);
    }
  };

  return (
    <div>
      <button onClick={useCustomModel}>
        Use Custom Model
      </button>
      {result && <pre>{JSON.stringify(result, null, 2)}</pre>}
    </div>
  );
}

Audio Transcription

The library automatically handles audio format conversion for Whisper models, converting audio blobs to the required Float32Array format with proper resampling to 16kHz.

function AudioTranscription() {
  const { transcribeAudio, libraryStatus } = useTransformers();
  const [transcription, setTranscription] = useState('');
  const [loading, setLoading] = useState(false);

  const handleFileUpload = async (event) => {
    const file = event.target.files[0];
    if (file && libraryStatus === 'ready') {
      setLoading(true);
      try {
        // Library automatically converts audio to proper format for Whisper
        const result = await transcribeAudio(file);
        setTranscription(result.text);
      } catch (error) {
        console.error('Transcription failed:', error);
      } finally {
        setLoading(false);
      }
    }
  };

  // Voice recording example
  const [recording, setRecording] = useState(false);
  const [mediaRecorder, setMediaRecorder] = useState(null);

  const startRecording = async () => {
    try {
      const stream = await navigator.mediaDevices.getUserMedia({ audio: true });
      const recorder = new MediaRecorder(stream);
      const chunks = [];

      recorder.ondataavailable = (e) => chunks.push(e.data);
      recorder.onstop = async () => {
        const audioBlob = new Blob(chunks, { type: 'audio/webm' });
        const result = await transcribeAudio(audioBlob);
        setTranscription(result.text);
        stream.getTracks().forEach(track => track.stop());
      };

      recorder.start();
      setMediaRecorder(recorder);
      setRecording(true);
    } catch (error) {
      console.error('Recording failed:', error);
    }
  };

  const stopRecording = () => {
    if (mediaRecorder) {
      mediaRecorder.stop();
      setMediaRecorder(null);
      setRecording(false);
    }
  };

  return (
    <div>
      <div>
        <input 
          type="file" 
          accept="audio/*" 
          onChange={handleFileUpload}
          disabled={libraryStatus !== 'ready' || loading}
        />
        <button
          onClick={recording ? stopRecording : startRecording}
          disabled={libraryStatus !== 'ready' || loading}
        >
          {recording ? 'Stop Recording' : 'Start Recording'}
        </button>
      </div>
      
      {loading && <p>Processing audio...</p>}
      {transcription && (
        <div>
          <h3>Transcription:</h3>
          <p>{transcription}</p>
        </div>
      )}
    </div>
  );
}

Audio Format Support

The transcribeAudio function automatically handles:

  • Format Conversion: Converts Blob/File to Float32Array required by Whisper
  • Sample Rate: Automatically resamples to 16kHz (Whisper requirement)
  • Mono Conversion: Converts stereo to mono by using the first channel
  • Browser Compatibility: Uses Web Audio API for optimal performance

Supported audio formats: WAV, MP3, MP4, WebM, OGG, and any format supported by the browser's AudioContext.

Model Management

function ModelManager() {
  const { models, modelStatus, loadModel, unloadModel } = useTransformers();
  
  const loadSentimentModel = () => {
    loadModel('Xenova/distilbert-base-uncased-finetuned-sst-2-english', 'sentiment-analysis');
  };
  
  const unloadSentimentModel = () => {
    unloadModel('Xenova/distilbert-base-uncased-finetuned-sst-2-english');
  };

  return (
    <div>
      <h3>Loaded Models:</h3>
      {Object.entries(models).map(([modelId, model]) => (
        <div key={modelId}>
          <span>{modelId}</span>
          <span>Status: {modelStatus[modelId]}</span>
          <button onClick={() => unloadModel(modelId)}>Unload</button>
        </div>
      ))}
      
      <button onClick={loadSentimentModel}>
        Load Sentiment Model
      </button>
    </div>
  );
}

🔧 Configuration

Content Security Policy (CSP)

If you're using CSP, you'll need to allow the transformers script:

<TransformersProvider nonce={cspNonce}>
  <App />
</TransformersProvider>

Self-Hosting

You can self-host the transformers library:

<TransformersProvider moduleUrl="/static/transformers.esm.js">
  <App />
</TransformersProvider>

Error Handling

function AppWithErrorHandling() {
  const handleLibraryError = (error: Error) => {
    console.error('Transformers library failed to load:', error);
    // Report to error tracking service
  };

  const handleModelError = (modelId: string, error: Error) => {
    console.error(`Model ${modelId} failed to load:`, error);
    // Show user-friendly error message
  };

  return (
    <TransformersProvider
      onLibraryError={handleLibraryError}
      onModelError={handleModelError}
    >
      <App />
    </TransformersProvider>
  );
}

🎭 Examples

Check out our examples directory for complete working examples:

  • Kitchen Sink Demo - Comprehensive demo showcasing sentiment analysis, audio transcription, and advanced features

🤝 Contributing

We welcome contributions! Please see our Contributing Guide for details.

Development Setup

  1. Clone the repository
  2. Install dependencies: npm install
  3. Start development: npm run dev
  4. Run tests: npm test
  5. Build: npm run build

📚 Documentation

Browser Compatibility

Audio transcription requires:

  • Modern browser with Web Audio API support
  • HTTPS for microphone access
  • Supported audio formats (most common formats work)

Common Issues

Library not loading

  • Check network connectivity
  • Verify CSP settings if using strict CSP
  • Try increasing loadTimeout prop

Models failing to load

  • Check available memory (models can be large)
  • Verify internet connection
  • Try different model IDs

🐛 Issues

If you encounter any issues, please create an issue on GitHub.

📄 License

MIT © Muhammad Dadu

🙏 Acknowledgments

  • Hugging Face for the amazing Transformers.js library
  • The React team for the incredible framework
  • All contributors who help make this project better

Made with ❤️ by Muhammad Dadu