npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

hypersave

v1.0.3

Published

Official TypeScript/JavaScript SDK for the Hypersave API - Your AI-powered memory layer

Readme

Hypersave SDK

Official TypeScript/JavaScript SDK for the Hypersave API - Your AI-powered memory layer.

Documentation | Platform | API Reference

Installation

npm install hypersave
# or
yarn add hypersave
# or
pnpm add hypersave

Quick Start

import { HypersaveClient } from 'hypersave';

const client = new HypersaveClient({
  apiKey: 'your-api-key',
  // baseUrl: 'https://api.hypersave.io', // Optional, this is the default
});

// Save content to your memory
const saved = await client.save({
  content: 'Meeting notes: Discussed Q4 roadmap with the team...',
  category: 'Work',
});

// Ask questions about your saved content
const answer = await client.ask('What was discussed in the Q4 meeting?');
console.log(answer.answer);

// Search your memories
const results = await client.search('roadmap');
console.log(results.results);

Features

  • Save: Store any content (text, URLs, documents) with AI-powered analysis
  • Ask: Get verified answers from your personal knowledge base
  • Search: Find relevant documents and facts using semantic search
  • Query: Multi-strategy search with reminder support
  • Profile: Build and query your user profile from extracted facts
  • Graph: Explore your knowledge graph

Performance

| Operation | Latency | |-----------|---------| | save() | ~50ms (async) | | ask() - first query | ~1.5s | | ask() - cached | under 10ms | | search() | ~500ms |

Responses are automatically cached for 5 minutes for faster repeated queries.

API Reference

Configuration

interface HypersaveConfig {
  apiKey: string;           // Required: Your API key
  baseUrl?: string;         // Optional: API base URL (default: https://api.hypersave.io)
  timeout?: number;         // Optional: Request timeout in ms (default: 30000)
  userId?: string;          // Optional: Default user ID for all requests
}

Core Methods

save(options) - Save content

// Async save (default) - returns immediately
const result = await client.save({
  content: 'https://example.com/article',
  title: 'Interesting Article',
  category: 'Research',
});

// Check status of async save
if (result.pendingId) {
  const status = await client.getSaveStatus(result.pendingId);
  console.log(status.status); // 'processing' | 'indexed' | 'complete' | 'error'
}

saveSync(options) - Save and wait for completion

const result = await client.saveSync({
  content: 'Important note to remember',
});
console.log(`Saved! Extracted ${result.saved?.facts} facts`);

ask(query) - Ask a question

const answer = await client.ask('What are my favorite programming languages?');
console.log(answer.answer);
console.log(`Confidence: ${answer.confidence}`);
console.log(`Used ${answer.context.memoriesUsed} memories`);

search(query, options) - Search documents and facts

const results = await client.search('machine learning', {
  limit: 20,
  includeContext: true,
});

for (const result of results.results) {
  console.log(`[${result.type}] ${result.content} (${result.relevance})`);
}

query(message, options) - Multi-strategy search

const result = await client.query('coffee meeting tomorrow', {
  limit: 30,
});

// Check for triggered reminders
if (result.reminders.length > 0) {
  console.log('Reminder:', result.reminders[0].content);
}

console.log(`Found ${result.stats.totalResults} results`);

getMemories(options) - List saved memories

const memories = await client.getMemories({ limit: 100 });
console.log(`${memories.total} documents, ${memories.facts} facts`);

for (const doc of memories.documents) {
  console.log(`- ${doc.title} (${doc.type})`);
}

getProfile() - Get user profile

const profile = await client.getProfile();
console.log('Profile:', profile.profile);
console.log(`Built from ${profile.facts.length} facts`);

getGraph() - Get knowledge graph

const graph = await client.getGraph();
console.log(`${graph.nodes.length} nodes, ${graph.edges.length} edges`);

deleteMemory(id) - Delete a memory

await client.deleteMemory('document-id-123');

remind(options) - Create a reminder

const reminder = await client.remind({
  content: 'Buy milk',
  trigger: 'grocery store',
  priority: 3,
});

getUsage() - Get API usage stats

const usage = await client.getUsage();
console.log(`${usage.usage.documentsIndexed} documents indexed`);

Error Handling

The SDK provides typed errors for better error handling:

import {
  HypersaveClient,
  HypersaveError,
  AuthenticationError,
  ValidationError,
  RateLimitError,
  NotFoundError,
  isHypersaveError,
} from 'hypersave';

try {
  const result = await client.ask('my question');
} catch (error) {
  if (error instanceof AuthenticationError) {
    console.error('Invalid API key');
  } else if (error instanceof RateLimitError) {
    console.error(`Rate limited. Retry after ${error.retryAfter}s`);
  } else if (error instanceof ValidationError) {
    console.error('Invalid request:', error.details);
  } else if (error instanceof NotFoundError) {
    console.error('Resource not found');
  } else if (isHypersaveError(error)) {
    console.error(`API error (${error.statusCode}): ${error.message}`);
  } else {
    throw error;
  }
}

TypeScript Support

Full TypeScript support with exported types:

import type {
  HypersaveConfig,
  SaveOptions,
  SaveResult,
  AskResult,
  SearchResult,
  DocumentType,
  CategoryType,
  SectorType,
} from 'hypersave';

Examples

Save a URL and get summary

const result = await client.saveSync({
  content: 'https://arxiv.org/abs/2301.00001',
  category: 'Research',
});

console.log(`Saved: ${result.saved?.title}`);
console.log(`Extracted ${result.saved?.facts} facts`);

Build a chatbot with memory

async function chat(message: string) {
  // Search relevant context
  const context = await client.query(message, { limit: 5 });

  // Format context for your LLM
  const memories = context.results
    .map(r => r.content)
    .join('\n');

  // Pass to your LLM with the context
  const response = await yourLLM.chat({
    system: `Use this context from the user's memories:\n${memories}`,
    message,
  });

  return response;
}

Semantic search with filtering

const results = await client.search('project deadlines', {
  limit: 20,
  includeContext: true,
});

Use with Local LLMs (Ollama)

Hypersave works as a memory layer for any LLM, including local open-source models:

import { HypersaveClient } from 'hypersave';
import ollama from 'ollama';

const hypersave = new HypersaveClient({
  apiKey: 'your-api-key',
  baseUrl: 'https://api.hypersave.io'
});

async function chatWithMemory(userMessage: string) {
  // Get memory-augmented answer from Hypersave
  const memoryResponse = await hypersave.ask(userMessage);

  console.log(`Found ${memoryResponse.context?.memoriesUsed} memories`);

  // Enhance with local LLM for richer response
  const response = await ollama.chat({
    model: 'gpt-oss:20b', // or llama3.1, mistral, etc.
    messages: [
      {
        role: 'system',
        content: `User info from memory: "${memoryResponse.answer}". Use this to personalize.`
      },
      { role: 'user', content: userMessage }
    ]
  });

  return response.message.content;
}

// Save facts to Hypersave
await hypersave.save({ content: 'I work as a software engineer at Google', type: 'text' });
await hypersave.save({ content: 'My dog Max loves to play fetch', type: 'text' });

// Query with memory - LLM now knows your personal context
const answer = await chatWithMemory('What is my job?');
// Output: "You work as a software engineer at Google"

Validated with: GPT-OSS 20B, Llama 3.1, Qwen 2.5, Gemma 2, and other Ollama-compatible models.

License

MIT