npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

kokoro-js-zh

v2.1.7

Published

High-quality text-to-speech for the web, support Chinese, web播放文本到语音,支持中文语音.

Readme

中文语音

kokoro支持中文语音 support Chinese voice

用法

首先安装 kokoro-js-zhNPM:

npm i kokoro-js-zh

单独使用示例:

<script src="dist/kokoro.umd.js"></script>
<script>
  (async () => {
    const { KokoroTTS } = window.Kokoro;
    const tts = await KokoroTTS.from_pretrained(
      'onnx-community/Kokoro-82M-v1.0-ONNX-timestamped',
      { dtype: 'q8', device: 'wasm' }
    );
    console.log(tts.list_voices());
    const text = "¡Hola, mundo!";
    const audioBuffer = await tts.generate(text, { voice: "em_santa" });
  })();
</script>

使用包示例

import { KokoroTTS } from "kokoro-js-zh";

const model_id = "onnx-community/Kokoro-82M-v1.0-ONNX";
const tts = await KokoroTTS.from_pretrained(model_id, {
  dtype: "q8", // Options: "fp32", "fp16", "q8", "q4", "q4f16"
  device: "wasm", // Options: "wasm", "webgpu" (web) or "cpu" (node). If using "webgpu", we recommend using dtype="fp32".
});

const text = "Life is like a box of chocolates. You never know what you're gonna get.";
const audio = await tts.generate(text, {
  // Use `tts.list_voices()` to list all available voices
  voice: "zf_xiaobei",
});
audio.save("audio.wav");

Or if you'd prefer to stream the output, you can do that with:

import { KokoroTTS, TextSplitterStream } from "kokoro-js";

const model_id = "onnx-community/Kokoro-82M-v1.0-ONNX";
const tts = await KokoroTTS.from_pretrained(model_id, {
  dtype: "fp32", // Options: "fp32", "fp16", "q8", "q4", "q4f16"
  // device: "webgpu", // Options: "wasm", "webgpu" (web) or "cpu" (node).
});

// First, set up the stream
const splitter = new TextSplitterStream();
const stream = tts.stream(splitter, {
  voice: "zf_xiaobei",
});
(async () => {
  let i = 0;
  for await (const { text, phonemes, audio } of stream) {
    console.log({ text, phonemes });
    audio.save(`audio-${i++}.wav`);
  }
})();

// Next, add text to the stream. Note that the text can be added at different times.
// For this example, let's pretend we're consuming text from an LLM, one word at a time.
const text = "你好,我是中文语音!";
const tokens = text.match(/\s*\S+/g);
for (const token of tokens) {
  splitter.push(token);
  await new Promise((resolve) => setTimeout(resolve, 10));
}

// Finally, close the stream to signal that no more text will be added.
splitter.close();

// Alternatively, if you'd like to keep the stream open, but flush any remaining text, you can use the `flush` method.
// splitter.flush();

Mandarin Chinese 支持的中文语音

这里都是四川话的中文语音

| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 | | ---- | ------ | -------------- | ----------------- | ------------- | ------ | | zf_xiaobei | 🚺 | C | MM minutes | D | 9b76be63 | | zf_xiaoni | 🚺 | C | MM minutes | D | 95b49f16 | | zf_xiaoxiao | 🚺 | C | MM minutes | D | cfaf6f2d | | zf_xiaoyi | 🚺 | C | MM minutes | D | b5235dba | | zm_yunjian | 🚹 | C | MM minutes | D | 76cbf8ba | | zm_yunxi | 🚹 | C | MM minutes | D | dbe6e1ce | | zm_yunxia | 🚹 | C | MM minutes | D | bb2b03b0 | | zm_yunyang | 🚹 | C | MM minutes | D | 5238ac22 |

Folders:

常见错误

  1. 如果用vite 本地dev报错,需要把espeak-ng.wasm 复制到 node_modules/.vite/deps 目录下
  2. 语音可以替换,我还在尝试不同的中文语音, 目前中文口音的问题需要重新编译WASM

Build WASM

# Docker (optional)
docker run -it -v $(pwd):/wasm -w /wasm debian:12.5
apt-get update
apt-get install --yes --no-install-recommends build-essential cmake ca-certificates curl pkg-config git python3 autogen automake autoconf libtool

# Emscripten
git clone --depth 1 https://github.com/emscripten-core/emsdk.git /wasm/modules/emsdk
cd /wasm/modules/emsdk
./emsdk install 4.0.14
./emsdk activate 4.0.14
source ./emsdk_env.sh
TOOLCHAIN_FILE=$EMSDK/upstream/emscripten/cmake/Modules/Platform/Emscripten.cmake
sed -i -E 's/int\s+(iswalnum|iswalpha|iswblank|iswcntrl|iswgraph|iswlower|iswprint|iswpunct|iswspace|iswupper|iswxdigit)\(wint_t\)/\/\/\0/g' ./upstream/emscripten/cache/sysroot/include/wchar.h

# espeak-ng
# https://github.com/ianmarmour/espeak-ng.js
git clone --depth 1 https://github.com/espeak-ng/espeak-ng.git /wasm/modules/espeak-ng
cd /wasm/modules/espeak-ng
./autogen.sh
./configure --without-async --without-mbrola --without-sonic --without-pcaudiolib --without-klatt --without-speechplayer --with-extdict-cmn
make

cd /wasm/modules/espeak-ng/src/ucd-tools
mv CHANGELOG.md CHANGELOG.tmp
mv CHANGELOG.tmp ChangeLog.md
./autogen.sh
./configure
make clean
emconfigure ./configure
emmake make clean
emmake make

cd /wasm/modules/espeak-ng
emconfigure ./configure --without-async --without-mbrola --without-sonic --without-pcaudiolib --without-klatt --without-speechplayer --with-extdict-cmn
emmake make clean
emmake make src/espeak-ng
emcc -O3 -s INVOKE_RUN=0 -s EXIT_RUNTIME=0 -s MODULARIZE=1 -s EXPORT_NAME='createESpeakNg' -s EXPORTED_FUNCTIONS='[_free, _malloc, _espeak_Initialize, _espeak_TextToPhonemes, _espeak_SetVoiceByName, _espeak_ListVoices]' -s EXPORTED_RUNTIME_METHODS='[lengthBytesUTF8, stringToUTF8, UTF8ToString, setValue, getValue, FS]' -s INITIAL_MEMORY=64MB -s STACK_SIZE=5MB -s DEFAULT_PTHREAD_STACK_SIZE=2MB src/.libs/libespeak-ng.so src/espeak-ng.o -o /wasm/espeakng.js --embed-file espeak-ng-data@/usr/local/share/espeak-ng-data/

Produces espeakng.js and espeakng.wasm in root.

原项目 Kokoro TTS

Kokoro is a frontier TTS model for its size of 82 million parameters (text in/audio out). This JavaScript library allows the model to be run 100% locally in the browser thanks to 🤗 Transformers.js. Try it out using our online demo!

Usage

First, install the kokoro-js library from NPM using:

npm i kokoro-js

You can then generate speech as follows:

import { KokoroTTS } from "kokoro-js";

const model_id = "onnx-community/Kokoro-82M-v1.0-ONNX";
const tts = await KokoroTTS.from_pretrained(model_id, {
  dtype: "q8", // Options: "fp32", "fp16", "q8", "q4", "q4f16"
  device: "wasm", // Options: "wasm", "webgpu" (web) or "cpu" (node). If using "webgpu", we recommend using dtype="fp32".
});

const text = "Life is like a box of chocolates. You never know what you're gonna get.";
const audio = await tts.generate(text, {
  // Use `tts.list_voices()` to list all available voices
  voice: "af_heart",
});
audio.save("audio.wav");

Or if you'd prefer to stream the output, you can do that with:

import { KokoroTTS, TextSplitterStream } from "kokoro-js";

const model_id = "onnx-community/Kokoro-82M-v1.0-ONNX";
const tts = await KokoroTTS.from_pretrained(model_id, {
  dtype: "fp32", // Options: "fp32", "fp16", "q8", "q4", "q4f16"
  // device: "webgpu", // Options: "wasm", "webgpu" (web) or "cpu" (node).
});

// First, set up the stream
const splitter = new TextSplitterStream();
const stream = tts.stream(splitter);
(async () => {
  let i = 0;
  for await (const { text, phonemes, audio } of stream) {
    console.log({ text, phonemes });
    audio.save(`audio-${i++}.wav`);
  }
})();

// Next, add text to the stream. Note that the text can be added at different times.
// For this example, let's pretend we're consuming text from an LLM, one word at a time.
const text = "Kokoro is an open-weight TTS model with 82 million parameters. Despite its lightweight architecture, it delivers comparable quality to larger models while being significantly faster and more cost-efficient. With Apache-licensed weights, Kokoro can be deployed anywhere from production environments to personal projects. It can even run 100% locally in your browser, powered by Transformers.js!";
const tokens = text.match(/\s*\S+/g);
for (const token of tokens) {
  splitter.push(token);
  await new Promise((resolve) => setTimeout(resolve, 10));
}

// Finally, close the stream to signal that no more text will be added.
splitter.close();

// Alternatively, if you'd like to keep the stream open, but flush any remaining text, you can use the `flush` method.
// splitter.flush();

Voices/Samples

[!TIP] You can find samples for each of the voices in the model card on Hugging Face.

American English

| Name | Traits | Target Quality | Training Duration | Overall Grade | | ------------ | ------ | -------------- | ----------------- | ------------- | | af_heart | 🚺❤️ | | | A | | af_alloy | 🚺 | B | MM minutes | C | | af_aoede | 🚺 | B | H hours | C+ | | af_bella | 🚺🔥 | A | HH hours | A- | | af_jessica | 🚺 | C | MM minutes | D | | af_kore | 🚺 | B | H hours | C+ | | af_nicole | 🚺🎧 | B | HH hours | B- | | af_nova | 🚺 | B | MM minutes | C | | af_river | 🚺 | C | MM minutes | D | | af_sarah | 🚺 | B | H hours | C+ | | af_sky | 🚺 | B | M minutes 🤏 | C- | | am_adam | 🚹 | D | H hours | F+ | | am_echo | 🚹 | C | MM minutes | D | | am_eric | 🚹 | C | MM minutes | D | | am_fenrir | 🚹 | B | H hours | C+ | | am_liam | 🚹 | C | MM minutes | D | | am_michael | 🚹 | B | H hours | C+ | | am_onyx | 🚹 | C | MM minutes | D | | am_puck | 🚹 | B | H hours | C+ | | am_santa | 🚹 | C | M minutes 🤏 | D- |

British English

| Name | Traits | Target Quality | Training Duration | Overall Grade | | ----------- | ------ | -------------- | ----------------- | ------------- | | bf_alice | 🚺 | C | MM minutes | D | | bf_emma | 🚺 | B | HH hours | B- | | bf_isabella | 🚺 | B | MM minutes | C | | bf_lily | 🚺 | C | MM minutes | D | | bm_daniel | 🚹 | C | MM minutes | D | | bm_fable | 🚹 | B | MM minutes | C | | bm_george | 🚹 | B | MM minutes | C | | bm_lewis | 🚹 | C | H hours | D+ |