lego-moe-experimental
v0.1.0
Published
Experimental SDK demonstrating modular AI architecture with inverse scaling properties
Maintainers
Readme
LEGO-MoE Experimental SDK
⚠️ Status: Research prototype demonstrating architectural regime
Version: 0.1.0
License: MIT
Use at your own risk
What This Is
A reference implementation of modular AI architecture demonstrating:
- 60× latency reduction via deterministic caching
- Edge-deployable inference (no GPU)
- Integrity-first gating
What This Is NOT
- ❌ Production-ready AI system
- ❌ Calibrated confidence scores (H2 gap: r=0.005)
- ❌ Sub-millisecond cache (H5 gap: 1.74ms)
Validation Results
Based on 1,000-query validation (100,000 total runs):
- Average latency: 3.30ms (vs 200.79ms baseline) — 60.8× faster
- Median latency: 0.09ms — 2,226× faster
- Cache hit rate: 87.2%
See docs/VALIDATION.md for full results.
Installation
npm install lego-moe-experimentalQuick Start
import { LegoMoE } from 'lego-moe-experimental';
const moe = new LegoMoE();
// Basic query
const result = await moe.query("What is 2+2?");
console.log(result);
// { answer: "4", latency: 0.09, cached: false }
// Repeated query (cached)
const result2 = await moe.query("What is 2+2?");
console.log(result2);
// { answer: "4", latency: 0.01, cached: true }Features
✅ Deterministic Caching
Same input → same output, enabling safe caching:
const result1 = await moe.query("Hello");
const result2 = await moe.query("Hello");
// result1.answer === result2.answer (guaranteed)✅ Integrity-First Gating
Invalid input rejected before expensive processing:
const result = await moe.query("!!!!");
console.log(result);
// { answer: "[REFUSED] Invalid input format", refused: true }✅ Metrics Collection
Track latency and cache performance:
await moe.query("Query 1", { metrics: true });
await moe.query("Query 2", { metrics: true });
const metrics = moe.getMetrics();
console.log(metrics);
// {
// totalQueries: 2,
// avgLatency: 1.5,
// cacheHitRate: 0.5,
// ...
// }Configuration
const moe = new LegoMoE({
cache: {
enabled: true,
maxSize: 10000,
ttl: 3600000 // 1 hour
},
gatekeeper: {
enabled: true,
refusalThreshold: 0.95
},
metrics: {
collectLatency: true,
collectExpertUsage: true
}
});Known Gaps
⚠️ IMPORTANT: See docs/KNOWN_GAPS.md for:
- H2: Confidence correlation (r=0.005, target >0.7) — fix in progress
- H5: Cache latency (1.74ms, target <1ms) — optimization in progress
- H3: Determinism validation (pending rerun)
Do NOT use confidence scores for safety-critical decisions.
Examples
See examples/ directory:
- basic.js — Simple usage
- metrics.js — Metrics collection
- advanced.js — Advanced configuration
Documentation
- VALIDATION.md — 1K validation results
- KNOWN_GAPS.md — Known issues and limitations
- Technical Report — Full research documentation
Use Cases
✅ Good for:
- Research and prototyping
- Architectural exploration
- Latency benchmarking
- Edge deployment testing
❌ NOT good for:
- Production systems
- Safety-critical applications
- Calibrated confidence requirements
Contributing
This is a research prototype. Contributions welcome, but understand:
- Architecture is experimental
- Breaking changes expected
- No production support
License
MIT License — use at your own risk
Citation
If you use this in research, please cite:
@misc{bhosale2025inverse,
title={Verified Architectural Regime: Computation Cost Decreases with Effective Certainty},
author={Bhosale, Shrikant},
year={2025},
note={Technical Report v1.0}
}The SDK demonstrates what's real. The gaps show what's honest.
