npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

linreg-core

v0.5.0

Published

Lightweight linear regression (OLS, Ridge, Lasso, Elastic Net) with diagnostic tests. Pure Rust - no external math dependencies.

Readme

linreg-core

CI Coverage License Crates.io npm PyPI docs.rs

A lightweight, self-contained linear regression library written in Rust. Compiles to WebAssembly for browser use, Python bindings via PyO3, or runs as a native Rust crate.

Key design principle: All linear algebra and statistical distribution functions are implemented from scratch — no external math libraries required. This keeps binary sizes small and makes the crate highly portable.


Table of Contents

| Section | Description | |---------|-------------| | Features | Regression methods, model statistics, diagnostic tests | | Rust Usage | Native Rust crate usage | | WebAssembly Usage | Browser/JavaScript usage | | Python Usage | Python bindings via PyO3 | | Feature Flags | Build configuration options | | Validation | Testing and verification | | Implementation Notes | Technical details |


Features

Regression Methods

  • OLS Regression: Coefficients, standard errors, t-statistics, p-values, confidence intervals, model selection criteria (AIC, BIC, log-likelihood)
  • Ridge Regression: L2-regularized regression with optional standardization, effective degrees of freedom, model selection criteria
  • Lasso Regression: L1-regularized regression via coordinate descent with automatic variable selection, convergence tracking, model selection criteria
  • Elastic Net: Combined L1 + L2 regularization for variable selection with multicollinearity handling, active set convergence, model selection criteria
  • LOESS: Locally estimated scatterplot smoothing for non-parametric curve fitting with configurable span, polynomial degree, and robust fitting
  • Lambda Path Generation: Create regularization paths for cross-validation

Model Statistics

  • Fit Metrics: R-squared, Adjusted R-squared, F-statistic, F-test p-value
  • Error Metrics: Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE)
  • Model Selection: Log-likelihood, AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion)
  • Residuals: Raw residuals, standardized residuals, fitted values, leverage (hat matrix diagonal)
  • Multicollinearity: Variance Inflation Factor (VIF) for each predictor

Diagnostic Tests

| Category | Tests | |----------|-------| | Linearity | Rainbow Test, Harvey-Collier Test, RESET Test | | Heteroscedasticity | Breusch-Pagan (Koenker variant), White Test (R & Python methods) | | Normality | Jarque-Bera, Shapiro-Wilk (n ≤ 5000), Anderson-Darling | | Autocorrelation | Durbin-Watson, Breusch-Godfrey (higher-order) | | Multicollinearity | Variance Inflation Factor (VIF) | | Influence | Cook's Distance, DFBETAS, DFFITS |


Rust Usage

Add to your Cargo.toml:

[dependencies]
linreg-core = { version = "0.5", default-features = false }

OLS Regression (Rust)

use linreg_core::core::ols_regression;

fn main() -> Result<(), linreg_core::Error> {
    let y = vec![2.5, 3.7, 4.2, 5.1, 6.3];
    let x = vec![vec![1.0, 2.0, 3.0, 4.0, 5.0]];
    let names = vec!["Intercept".to_string(), "X1".to_string()];

    let result = ols_regression(&y, &x, &names)?;

    println!("Coefficients: {:?}", result.coefficients);
    println!("R-squared: {:.4}", result.r_squared);
    println!("F-statistic: {:.4}", result.f_statistic);
    println!("Log-likelihood: {:.4}", result.log_likelihood);
    println!("AIC: {:.4}", result.aic);
    println!("BIC: {:.4}", result.bic);

    Ok(())
}

Ridge Regression (Rust)

use linreg_core::regularized::{ridge_fit, RidgeFitOptions};
use linreg_core::linalg::Matrix;

fn main() -> Result<(), linreg_core::Error> {
    let y = vec![2.5, 3.7, 4.2, 5.1, 6.3];
    let x = Matrix::new(5, 2, vec![
        1.0, 1.0,  // row 0: intercept, x1
        1.0, 2.0,  // row 1
        1.0, 3.0,  // row 2
        1.0, 4.0,  // row 3
        1.0, 5.0,  // row 4
    ]);

    let options = RidgeFitOptions {
        lambda: 1.0,
        standardize: true,
        intercept: true,
    };

    let result = ridge_fit(&x, &y, &options)?;
    println!("Intercept: {}", result.intercept);
    println!("Coefficients: {:?}", result.coefficients);
    println!("R-squared: {:.4}", result.r_squared);
    println!("Effective degrees of freedom: {:.2}", result.effective_df);
    println!("AIC: {:.4}", result.aic);
    println!("BIC: {:.4}", result.bic);

    Ok(())
}

Lasso Regression (Rust)

use linreg_core::regularized::{lasso_fit, LassoFitOptions};
use linreg_core::linalg::Matrix;

fn main() -> Result<(), linreg_core::Error> {
    let y = vec![2.5, 3.7, 4.2, 5.1, 6.3];
    let x = Matrix::new(5, 3, vec![
        1.0, 1.0, 0.5,
        1.0, 2.0, 1.0,
        1.0, 3.0, 1.5,
        1.0, 4.0, 2.0,
        1.0, 5.0, 2.5,
    ]);

    let options = LassoFitOptions {
        lambda: 0.1,
        standardize: true,
        intercept: true,
        ..Default::default()
    };

    let result = lasso_fit(&x, &y, &options)?;
    println!("Intercept: {}", result.intercept);
    println!("Coefficients: {:?}", result.coefficients);
    println!("Non-zero coefficients: {}", result.n_nonzero);
    println!("AIC: {:.4}", result.aic);
    println!("BIC: {:.4}", result.bic);

    Ok(())
}

Elastic Net Regression (Rust)

use linreg_core::regularized::{elastic_net_fit, ElasticNetOptions};
use linreg_core::linalg::Matrix;

fn main() -> Result<(), linreg_core::Error> {
    let y = vec![2.5, 3.7, 4.2, 5.1, 6.3];
    let x = Matrix::new(5, 3, vec![
        1.0, 1.0, 0.5,
        1.0, 2.0, 1.0,
        1.0, 3.0, 1.5,
        1.0, 4.0, 2.0,
        1.0, 5.0, 2.5,
    ]);

    let options = ElasticNetOptions {
        lambda: 0.1,
        alpha: 0.5,   // 0 = Ridge, 1 = Lasso, 0.5 = balanced
        standardize: true,
        intercept: true,
        ..Default::default()
    };

    let result = elastic_net_fit(&x, &y, &options)?;
    println!("Intercept: {}", result.intercept);
    println!("Coefficients: {:?}", result.coefficients);
    println!("Non-zero coefficients: {}", result.n_nonzero);
    println!("AIC: {:.4}", result.aic);
    println!("BIC: {:.4}", result.bic);

    Ok(())
}

Diagnostic Tests (Rust)

use linreg_core::diagnostics::{
    breusch_pagan_test, durbin_watson_test, jarque_bera_test,
    shapiro_wilk_test, RainbowMethod, rainbow_test
};

fn main() -> Result<(), linreg_core::Error> {
    let y = vec![/* your data */];
    let x = vec![vec![/* predictor 1 */], vec![/* predictor 2 */]];

    // Heteroscedasticity
    let bp = breusch_pagan_test(&y, &x)?;
    println!("Breusch-Pagan: LM={:.4}, p={:.4}", bp.statistic, bp.p_value);

    // Autocorrelation
    let dw = durbin_watson_test(&y, &x)?;
    println!("Durbin-Watson: {:.4}", dw.statistic);

    // Normality
    let jb = jarque_bera_test(&y, &x)?;
    println!("Jarque-Bera: JB={:.4}, p={:.4}", jb.statistic, jb.p_value);

    // Linearity
    let rainbow = rainbow_test(&y, &x, 0.5, RainbowMethod::R)?;
    println!("Rainbow: F={:.4}, p={:.4}",
        rainbow.r_result.as_ref().unwrap().statistic,
        rainbow.r_result.as_ref().unwrap().p_value);

    Ok(())
}

Lambda Path Generation (Rust)

use linreg_core::regularized::{make_lambda_path, LambdaPathOptions};
use linreg_core::linalg::Matrix;

let x = Matrix::new(100, 5, vec![0.0; 500]);
let y = vec![0.0; 100];

let options = LambdaPathOptions {
    nlambda: 100,
    lambda_min_ratio: Some(0.01),
    alpha: 1.0,  // Lasso
    ..Default::default()
};

let lambdas = make_lambda_path(&x, &y, &options, None, Some(0));

for &lambda in lambdas.iter() {
    // Fit model with this lambda
}

WebAssembly Usage

Build with wasm-pack:

wasm-pack build --release --target web

OLS Regression (WASM)

import init, { ols_regression } from './pkg/linreg_core.js';

async function run() {
    await init();

    const y = [1, 2, 3, 4, 5];
    const x = [[1, 2, 3, 4, 5]];
    const names = ["Intercept", "X1"];

    const resultJson = ols_regression(
        JSON.stringify(y),
        JSON.stringify(x),
        JSON.stringify(names)
    );

    const result = JSON.parse(resultJson);
    console.log("Coefficients:", result.coefficients);
    console.log("R-squared:", result.r_squared);
    console.log("Log-likelihood:", result.log_likelihood);
    console.log("AIC:", result.aic);
    console.log("BIC:", result.bic);
}

run();

Ridge Regression (WASM)

const result = JSON.parse(ridge_regression(
    JSON.stringify(y),
    JSON.stringify(x),
    JSON.stringify(["Intercept", "X1", "X2"]),
    1.0,      // lambda
    true      // standardize
));

console.log("Coefficients:", result.coefficients);
console.log("R-squared:", result.r_squared);
console.log("Effective degrees of freedom:", result.effective_df);
console.log("AIC:", result.aic);
console.log("BIC:", result.bic);

Lasso Regression (WASM)

const result = JSON.parse(lasso_regression(
    JSON.stringify(y),
    JSON.stringify(x),
    JSON.stringify(["Intercept", "X1", "X2"]),
    0.1,      // lambda
    true,     // standardize
    100000,   // max_iter
    1e-7      // tol
));

console.log("Coefficients:", result.coefficients);
console.log("Non-zero coefficients:", result.n_nonzero);
console.log("AIC:", result.aic);
console.log("BIC:", result.bic);

Elastic Net Regression (WASM)

const result = JSON.parse(elastic_net_regression(
    JSON.stringify(y),
    JSON.stringify(x),
    JSON.stringify(["Intercept", "X1", "X2"]),
    0.1,      // lambda
    0.5,      // alpha (0 = Ridge, 1 = Lasso, 0.5 = balanced)
    true,     // standardize
    100000,   // max_iter
    1e-7      // tol
));

console.log("Coefficients:", result.coefficients);
console.log("Non-zero coefficients:", result.n_nonzero);
console.log("AIC:", result.aic);
console.log("BIC:", result.bic);

Lambda Path Generation (WASM)

const path = JSON.parse(make_lambda_path(
    JSON.stringify(y),
    JSON.stringify(x),
    100,              // n_lambda
    0.01              // lambda_min_ratio (as fraction of lambda_max)
));

console.log("Lambda sequence:", path.lambda_path);
console.log("Lambda max:", path.lambda_max);

LOESS Regression (WASM)

const result = JSON.parse(loess_fit(
    JSON.stringify(y),
    JSON.stringify(x[0]),    // Single predictor only (flattened array)
    0.5,      // span (smoothing parameter: 0-1)
    1,        // degree (0=constant, 1=linear, 2=quadratic)
    "direct", // surface method ("direct" or "interpolate")
    0         // robust iterations (0=disabled, >0=number of iterations)
));

console.log("Fitted values:", result.fitted_values);
console.log("Residuals:", result.residuals);

Diagnostic Tests (WASM)

// Rainbow test
const rainbow = JSON.parse(rainbow_test(
    JSON.stringify(y),
    JSON.stringify(x),
    0.5,      // fraction
    "r"       // method: "r", "python", or "both"
));

// Harvey-Collier test
const hc = JSON.parse(harvey_collier_test(
    JSON.stringify(y),
    JSON.stringify(x)
));

// Breusch-Pagan test
const bp = JSON.parse(breusch_pagan_test(
    JSON.stringify(y),
    JSON.stringify(x)
));

// White test (method selection: "r", "python", or "both")
const white = JSON.parse(white_test(
    JSON.stringify(y),
    JSON.stringify(x),
    "r"
));

// White test - R-specific method
const whiteR = JSON.parse(r_white_test(
    JSON.stringify(y),
    JSON.stringify(x)
));

// White test - Python-specific method
const whitePy = JSON.parse(python_white_test(
    JSON.stringify(y),
    JSON.stringify(x)
));

// Jarque-Bera test
const jb = JSON.parse(jarque_bera_test(
    JSON.stringify(y),
    JSON.stringify(x)
));

// Durbin-Watson test
const dw = JSON.parse(durbin_watson_test(
    JSON.stringify(y),
    JSON.stringify(x)
));

// Shapiro-Wilk test
const sw = JSON.parse(shapiro_wilk_test(
    JSON.stringify(y),
    JSON.stringify(x)
));

// Anderson-Darling test
const ad = JSON.parse(anderson_darling_test(
    JSON.stringify(y),
    JSON.stringify(x)
));

// Cook's Distance
const cd = JSON.parse(cooks_distance_test(
    JSON.stringify(y),
    JSON.stringify(x)
));

// DFBETAS (influence on coefficients)
const dfbetas = JSON.parse(dfbetas_test(
    JSON.stringify(y),
    JSON.stringify(x)
));

// DFFITS (influence on fitted values)
const dffits = JSON.parse(dffits_test(
    JSON.stringify(y),
    JSON.stringify(x)
));

// VIF test (multicollinearity)
const vif = JSON.parse(vif_test(
    JSON.stringify(y),
    JSON.stringify(x)
));
console.log("VIF values:", vif.vif_values);

// RESET test (functional form)
const reset = JSON.parse(reset_test(
    JSON.stringify(y),
    JSON.stringify(x),
    JSON.stringify([2, 3]),  // powers
    "fitted"                  // type: "fitted", "regressor", or "princomp"
));

// Breusch-Godfrey test (higher-order autocorrelation)
const bg = JSON.parse(breusch_godfrey_test(
    JSON.stringify(y),
    JSON.stringify(x),
    1,        // order
    "chisq"   // test_type: "chisq" or "f"
));

Statistical Utilities (WASM)

// Student's t CDF: P(T <= t)
const tCDF = get_t_cdf(1.96, 20);

// Critical t-value for two-tailed test
const tCrit = get_t_critical(0.05, 20);

// Normal inverse CDF (probit)
const zScore = get_normal_inverse(0.975);

// Descriptive statistics (all return JSON strings)
const mean = JSON.parse(stats_mean(JSON.stringify([1, 2, 3, 4, 5])));
const variance = JSON.parse(stats_variance(JSON.stringify([1, 2, 3, 4, 5])));
const stddev = JSON.parse(stats_stddev(JSON.stringify([1, 2, 3, 4, 5])));
const median = JSON.parse(stats_median(JSON.stringify([1, 2, 3, 4, 5])));
const quantile = JSON.parse(stats_quantile(JSON.stringify([1, 2, 3, 4, 5]), 0.5));
const correlation = JSON.parse(stats_correlation(
    JSON.stringify([1, 2, 3, 4, 5]),
    JSON.stringify([2, 4, 6, 8, 10])
));

CSV Parsing (WASM)

const csv = parse_csv(csvContent);
const parsed = JSON.parse(csv);
console.log("Headers:", parsed.headers);
console.log("Numeric columns:", parsed.numeric_columns);

Helper Functions (WASM)

const version = get_version();  // e.g., "0.5.0"
const msg = test();             // "Rust WASM is working!"

Domain Security (WASM)

Optional domain restriction via build-time environment variable:

LINREG_DOMAIN_RESTRICT=example.com,mysite.com wasm-pack build --release --target web

When NOT set (default), all domains are allowed.


Python Usage

Install from PyPI:

pip install linreg-core

Quick Start (Python)

The recommended way to use linreg-core in Python is with native types (lists or numpy arrays):

import linreg_core

# Works with Python lists
y = [1, 2, 3, 4, 5]
x = [[1, 2, 3, 4, 5]]
names = ["Intercept", "X1"]

result = linreg_core.ols_regression(y, x, names)

# Access attributes directly
print(f"R²: {result.r_squared}")
print(f"Coefficients: {result.coefficients}")
print(f"F-statistic: {result.f_statistic}")

# Get a formatted summary
print(result.summary())

With NumPy arrays:

import numpy as np
import linreg_core

y = np.array([1, 2, 3, 4, 5])
x = np.array([[1, 2, 3, 4, 5]])

result = linreg_core.ols_regression(y, x, ["Intercept", "X1"])
print(result.summary())

Result objects provide:

  • Direct attribute access (result.r_squared, result.coefficients, result.aic, result.bic, result.log_likelihood)
  • summary() method for formatted output
  • to_dict() method for JSON serialization

OLS Regression (Python)

import linreg_core

y = [1, 2, 3, 4, 5]
x = [[1, 2, 3, 4, 5]]
names = ["Intercept", "X1"]

result = linreg_core.ols_regression(y, x, names)
print(f"Coefficients: {result.coefficients}")
print(f"R-squared: {result.r_squared}")
print(f"F-statistic: {result.f_statistic}")
print(f"Log-likelihood: {result.log_likelihood}")
print(f"AIC: {result.aic}")
print(f"BIC: {result.bic}")

Ridge Regression (Python)

result = linreg_core.ridge_regression(
    y, x, ["Intercept", "X1"],
    1.0,      # lambda
    True      # standardize
)
print(f"Intercept: {result.intercept}")
print(f"Coefficients: {result.coefficients}")
print(f"Effective degrees of freedom: {result.effective_df:.2f}")
print(f"AIC: {result.aic}")
print(f"BIC: {result.bic}")

Lasso Regression (Python)

result = linreg_core.lasso_regression(
    y, x, ["Intercept", "X1"],
    0.1,      # lambda
    True,     # standardize
    100000,   # max_iter
    1e-7      # tol
)
print(f"Intercept: {result.intercept}")
print(f"Coefficients: {result.coefficients}")
print(f"Non-zero: {result.n_nonzero}")
print(f"Converged: {result.converged}")
print(f"AIC: {result.aic}")
print(f"BIC: {result.bic}")

Elastic Net Regression (Python)

result = linreg_core.elastic_net_regression(
    y, x, ["Intercept", "X1"],
    0.1,      # lambda
    0.5,      # alpha (0 = Ridge, 1 = Lasso, 0.5 = balanced)
    True,     # standardize
    100000,   # max_iter
    1e-7      # tol
)
print(f"Intercept: {result.intercept}")
print(f"Coefficients: {result.coefficients}")
print(f"Non-zero: {result.n_nonzero}")
print(f"AIC: {result.aic}")
print(f"BIC: {result.bic}")

Lambda Path Generation (Python)

path = linreg_core.make_lambda_path(
    y, x,
    100,              # n_lambda
    0.01              # lambda_min_ratio
)
print(f"Lambda max: {path.lambda_max}")
print(f"Lambda min: {path.lambda_min}")
print(f"Number: {path.n_lambda}")

Diagnostic Tests (Python)

# Breusch-Pagan test (heteroscedasticity)
bp = linreg_core.breusch_pagan_test(y, x)
print(f"Statistic: {bp.statistic}, p-value: {bp.p_value}")

# Harvey-Collier test (linearity)
hc = linreg_core.harvey_collier_test(y, x)

# Rainbow test (linearity) - supports "r", "python", or "both" methods
rainbow = linreg_core.rainbow_test(y, x, 0.5, "r")

# White test - choose method: "r", "python", or "both"
white = linreg_core.white_test(y, x, "r")
# Or use specific method functions
white_r = linreg_core.r_white_test(y, x)
white_py = linreg_core.python_white_test(y, x)

# Jarque-Bera test (normality)
jb = linreg_core.jarque_bera_test(y, x)

# Durbin-Watson test (autocorrelation)
dw = linreg_core.durbin_watson_test(y, x)
print(f"DW statistic: {dw.statistic}")

# Shapiro-Wilk test (normality)
sw = linreg_core.shapiro_wilk_test(y, x)

# Anderson-Darling test (normality)
ad = linreg_core.anderson_darling_test(y, x)

# Cook's Distance (influential observations)
cd = linreg_core.cooks_distance_test(y, x)
print(f"Influential points: {cd.influential_4_over_n}")

# DFBETAS (influence on each coefficient)
dfbetas = linreg_core.dfbetas_test(y, x)
print(f"Threshold: {dfbetas.threshold}")
print(f"Influential obs: {dfbetas.influential_observations}")

# DFFITS (influence on fitted values)
dffits = linreg_core.dffits_test(y, x)
print(f"Threshold: {dffits.threshold}")
print(f"Influential obs: {dffits.influential_observations}")

# RESET test (model specification)
reset = linreg_core.reset_test(y, x, [2, 3], "fitted")

# Breusch-Godfrey test (higher-order autocorrelation)
bg = linreg_core.breusch_godfrey_test(y, x, 1, "chisq")

Statistical Utilities (Python)

# Student's t CDF
t_cdf = linreg_core.get_t_cdf(1.96, 20)

# Critical t-value (two-tailed)
t_crit = linreg_core.get_t_critical(0.05, 20)

# Normal inverse CDF (probit)
z_score = linreg_core.get_normal_inverse(0.975)

# Library version
version = linreg_core.get_version()

Descriptive Statistics (Python)

import numpy as np

# All return float directly (no parsing needed)
mean = linreg_core.stats_mean([1, 2, 3, 4, 5])
variance = linreg_core.stats_variance([1, 2, 3, 4, 5])
stddev = linreg_core.stats_stddev([1, 2, 3, 4, 5])
median = linreg_core.stats_median([1, 2, 3, 4, 5])
quantile = linreg_core.stats_quantile([1, 2, 3, 4, 5], 0.5)
correlation = linreg_core.stats_correlation([1, 2, 3, 4, 5], [2, 4, 6, 8, 10])

# Works with numpy arrays too
mean = linreg_core.stats_mean(np.array([1, 2, 3, 4, 5]))

CSV Parsing (Python)

csv_content = '''name,value,category
Alice,42.5,A
Bob,17.3,B
Charlie,99.9,A'''

result = linreg_core.parse_csv(csv_content)
print(f"Headers: {result.headers}")
print(f"Numeric columns: {result.numeric_columns}")
print(f"Data rows: {result.n_rows}")

Feature Flags

| Feature | Default | Description | |---------|---------|-------------| | wasm | Yes | Enables WASM bindings and browser support | | python | No | Enables Python bindings via PyO3 | | validation | No | Includes test data for validation tests |

For native Rust without WASM overhead:

linreg-core = { version = "0.5", default-features = false }

For Python bindings (built with maturin):

pip install linreg-core

Validation

Results are validated against R (lmtest, car, skedastic, nortest, glmnet) and Python (statsmodels, scipy, sklearn). See the verification/ directory for test scripts and reference outputs.

Running Tests

# Unit tests
cargo test

# WASM tests
wasm-pack test --node

# All tests including doctests
cargo test --all-features

Implementation Notes

Regularization

The Ridge and Lasso implementations follow the glmnet formulation:

minimize (1/(2n)) * Σ(yᵢ - β₀ - xᵢᵀβ)² + λ * [(1 - α) * ||β||₂² / 2 + α * ||β||₁]
  • Ridge (α = 0): Closed-form solution with (X'X + λI)⁻¹X'y
  • Lasso (α = 1): Coordinate descent algorithm

Numerical Precision

  • QR decomposition used throughout for numerical stability
  • Anderson-Darling uses Abramowitz & Stegun 7.1.26 for normal CDF (differs from R's Cephes by ~1e-6)
  • Shapiro-Wilk implements Royston's 1995 algorithm matching R's implementation

Known Limitations

  • Harvey-Collier test may fail on high-VIF datasets (VIF > 5) due to numerical instability in recursive residuals
  • Shapiro-Wilk limited to n <= 5000 (matching R's limitation)
  • White test may differ from R on collinear datasets due to numerical precision in near-singular matrices

Disclaimer

This library is under active development and has not reached 1.0 stability. While outputs are validated against R and Python implementations, do not use this library for critical applications (medical, financial, safety-critical systems) without independent verification. See the LICENSE for full terms. The software is provided "as is" without warranty of any kind.


License

Dual-licensed under MIT or Apache-2.0.