llm-bridge
v1.1.1
Published
The Universal Translation Layer for Large Language Model APIs
Readme
🌉 LLM Bridge
The Universal Translation Layer for Large Language Model APIs
LLM Bridge is a powerful TypeScript library that provides seamless translation between different LLM provider APIs (OpenAI, Anthropic Claude, Google Gemini) while preserving zero data loss and enabling perfect reconstruction of original requests.
🚀 Why LLM Bridge Exists
The Problem
When building Infinite Chat API, we needed a way to create a proxy that supports multiple LLM providers. However, this is a difficult challenge, as I wrote in this blog post: The API layer for using intelligence is completely broken..
The particular challenges are in:
- Manipulating and creating proxies for different LLM providers
- Multi-modality
- Tool call chains
- Error handling
The Solution
LLM Bridge provides a universal format that acts as a common language between all major LLM providers, enabling:
✅ Perfect Translation - Convert between OpenAI, Anthropic, and Google formats
✅ Zero Data Loss - Every field is preserved with _original reconstruction
✅ Multimodal Support - Images, documents, and rich content across providers
✅ Tool Calling - Function calling translation between different formats
✅ Error Handling - Unified error types with provider-specific translation
✅ Type Safety - Full TypeScript support with strict typing
📦 Installation
npm install llm-bridge🔧 Quick Start
Basic Usage
import { toUniversal, fromUniversal, translateBetweenProviders } from 'llm-bridge'
// Convert OpenAI request to universal format
const openaiRequest = {
model: "gpt-4",
messages: [
{ role: "system", content: "You are a helpful assistant" },
{ role: "user", content: "Hello!" }
],
temperature: 0.7,
max_tokens: 1000
}
const universal = toUniversal("openai", openaiRequest)
console.log(universal.provider) // "openai"
console.log(universal.model) // "gpt-4"
console.log(universal.system) // "You are a helpful assistant"
// Convert universal format back to any provider
const anthropicRequest = fromUniversal("anthropic", universal)
const googleRequest = fromUniversal("google", universal)
// Or translate directly between providers
const anthropicRequest2 = translateBetweenProviders("openai", "anthropic", openaiRequest)Perfect Reconstruction
// Round-trip conversion with zero data loss
const original = { /* your OpenAI request */ }
const universal = toUniversal("openai", original)
const reconstructed = fromUniversal("openai", universal)
console.log(reconstructed === original) // Perfect equality!🎯 Core Features
1. Universal Format Translation
LLM Bridge converts between provider-specific formats through a universal intermediate format:
OpenAI ←→ Universal ←→ Anthropic
↕ ↕
Google ←→ Universal ←→ Custom2. Multimodal Content Support
Handle images and documents seamlessly across providers:
// OpenAI format with base64 image
const openaiMultimodal = {
model: "gpt-4-vision-preview",
messages: [{
role: "user",
content: [
{ type: "text", text: "What's in this image?" },
{
type: "image_url",
image_url: {
url: "...",
detail: "high"
}
}
]
}]
}
// Translate to Anthropic format
const anthropicMultimodal = translateBetweenProviders("openai", "anthropic", openaiMultimodal)
// Result: Anthropic-compatible format
// {
// model: "gpt-4-vision-preview",
// messages: [{
// role: "user",
// content: [
// { type: "text", text: "What's in this image?" },
// {
// type: "image",
// source: {
// type: "base64",
// media_type: "image/jpeg",
// data: "iVBORw0KGgoAAAA..."
// }
// }
// ]
// }]
// }3. Function/Tool Calling Translation
Seamlessly translate tool calls between different provider formats:
// OpenAI tool calling format
const openaiWithTools = {
model: "gpt-4",
messages: [
{
role: "assistant",
tool_calls: [{
id: "call_123",
type: "function",
function: {
name: "get_weather",
arguments: '{"location": "San Francisco"}'
}
}]
},
{
role: "tool",
content: '{"temperature": 72, "condition": "sunny"}',
tool_call_id: "call_123"
}
],
tools: [{
type: "function",
function: {
name: "get_weather",
description: "Get weather information",
parameters: {
type: "object",
properties: {
location: { type: "string" }
}
}
}
}]
}
// Translate to Google Gemini format
const geminiWithTools = translateBetweenProviders("openai", "google", openaiWithTools)
// Result: Google-compatible tool calling format
// {
// contents: [
// {
// role: "model",
// parts: [{
// functionCall: {
// name: "get_weather",
// args: { location: "San Francisco" }
// }
// }]
// },
// {
// role: "user",
// parts: [{
// functionResponse: {
// name: "get_weather",
// response: { temperature: 72, condition: "sunny" }
// }
// }]
// }
// ],
// tools: [...]
// }4. Error Handling & Translation
Unified error handling with provider-specific error translation:
import { buildUniversalError, translateError } from 'llm-bridge'
// Create a universal error
const error = buildUniversalError(
"rate_limit_error",
"Rate limit exceeded",
"openai",
{ retryAfter: 60 }
)
// Translate to different provider formats
const anthropicError = translateError(error.universal, "anthropic")
const googleError = translateError(error.universal, "google")
// Each provider gets the appropriate error format:
// OpenAI: { error: { type: "insufficient_quota", message: "Rate limit exceeded" } }
// Anthropic: { type: "error", error: { type: "rate_limit_error", message: "Rate limit exceeded" } }
// Google: { error: { code: 429, status: "RESOURCE_EXHAUSTED", message: "Rate limit exceeded" } }5. Provider Detection
Automatically detect which provider format you're working with:
import { detectProvider } from 'llm-bridge'
const provider1 = detectProvider({ model: "gpt-4", messages: [...] }) // "openai"
const provider2 = detectProvider({ model: "claude-3-opus", max_tokens: 100 }) // "anthropic"
const provider3 = detectProvider({ contents: [...] }) // "google"🏗️ Advanced Usage
Middleware Pattern
import { toUniversal, fromUniversal } from 'llm-bridge'
// Create a universal middleware
async function universalLLMMiddleware(request: any, targetProvider: string) {
// Convert any provider format to universal
const sourceProvider = detectProvider(request)
const universal = toUniversal(sourceProvider, request)
// Apply universal transformations
universal.temperature = Math.min(universal.temperature || 0, 1)
universal.max_tokens = Math.min(universal.max_tokens || 1000, 4000)
// Convert to target provider
const targetRequest = fromUniversal(targetProvider, universal)
// Make the API call
const response = await callProvider(targetProvider, targetRequest)
return response
}
// Use with any provider
const result1 = await universalLLMMiddleware(openaiRequest, "anthropic")
const result2 = await universalLLMMiddleware(anthropicRequest, "google")Load Balancing & Fallbacks
async function robustLLMCall(request: any) {
const providers = ["openai", "anthropic", "google"]
for (const provider of providers) {
try {
const universal = toUniversal(detectProvider(request), request)
const providerRequest = fromUniversal(provider, universal)
return await callProvider(provider, providerRequest)
} catch (error) {
console.log(`${provider} failed, trying next provider...`)
continue
}
}
throw new Error("All providers failed")
}Cost Optimization
import { getModelCosts, countUniversalTokens } from 'llm-bridge'
function optimizeModelChoice(request: any) {
const universal = toUniversal(detectProvider(request), request)
const tokens = countUniversalTokens(universal)
const models = [
{ provider: "openai", model: "gpt-4o-mini" },
{ provider: "anthropic", model: "claude-3-haiku" },
{ provider: "google", model: "gemini-1.5-flash" }
]
// Calculate cost for each model
const costs = models.map(({ provider, model }) => {
const modelCosts = getModelCosts(model)
const inputCost = (tokens.inputTokens / 1000) * modelCosts.inputCostPer1K
const outputCost = (tokens.outputTokens / 1000) * modelCosts.outputCostPer1K
return { provider, model, totalCost: inputCost + outputCost }
})
// Return cheapest option
return costs.sort((a, b) => a.totalCost - b.totalCost)[0]
}🔌 API Reference
Core Functions
toUniversal(provider, body)- Convert provider format to universalfromUniversal(provider, universal)- Convert universal to provider formattranslateBetweenProviders(from, to, body)- Direct provider-to-provider translationdetectProvider(body)- Auto-detect provider from request format
Utility Functions
getModelDetails(model)- Get model information and capabilitiesgetModelCosts(model)- Get pricing information for modelcountUniversalTokens(universal)- Estimate token usagecreateObservabilityData(universal)- Generate telemetry data
Error Handling
buildUniversalError(type, message, provider, options)- Create universal errortranslateError(error, targetProvider)- Translate error between providersparseProviderError(error, provider)- Parse provider-specific errors
🎨 Examples
Multi-Provider Chat Application
import { translateBetweenProviders, detectProvider } from 'llm-bridge'
class UniversalChatBot {
async chat(message: string, preferredProvider = "openai") {
const request = {
model: this.getModelForProvider(preferredProvider),
messages: [
{ role: "system", content: "You are a helpful assistant" },
{ role: "user", content: message }
],
temperature: 0.7
}
try {
// Try preferred provider first
return await this.callProvider(preferredProvider, request)
} catch (error) {
// Fallback to other providers
const fallbacks = ["anthropic", "google", "openai"]
.filter(p => p !== preferredProvider)
for (const provider of fallbacks) {
try {
const translated = translateBetweenProviders(
preferredProvider,
provider,
request
)
return await this.callProvider(provider, translated)
} catch (fallbackError) {
continue
}
}
throw new Error("All providers failed")
}
}
private getModelForProvider(provider: string) {
const models = {
openai: "gpt-4",
anthropic: "claude-3-opus-20240229",
google: "gemini-1.5-pro"
}
return models[provider] || "gpt-4"
}
}Image Analysis Across Providers
async function analyzeImage(imageUrl: string, provider: string) {
// Create OpenAI-style request
const request = {
model: "gpt-4-vision-preview",
messages: [{
role: "user",
content: [
{ type: "text", text: "Analyze this image in detail" },
{ type: "image_url", image_url: { url: imageUrl } }
]
}]
}
// Translate to target provider
const translated = translateBetweenProviders("openai", provider, request)
// Call the provider
return await callProvider(provider, translated)
}
// Works with any provider
const openaiResult = await analyzeImage(imageUrl, "openai")
const claudeResult = await analyzeImage(imageUrl, "anthropic")
const geminiResult = await analyzeImage(imageUrl, "google")🧪 Testing
Run the comprehensive test suite:
npm testOur test suite includes:
- ✅ 146 passing tests
- ✅ Provider format conversion
- ✅ Universal format translation
- ✅ Multimodal content handling
- ✅ Tool calling translation
- ✅ Error handling and translation
- ✅ Edge cases and malformed input
- ✅ Type safety verification
📄 License
MIT License - see LICENSE file for details.
🙋♂️ Support
Made with ❤️ by team supermemory
