npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

llm-bridge

v1.1.1

Published

The Universal Translation Layer for Large Language Model APIs

Readme

🌉 LLM Bridge

The Universal Translation Layer for Large Language Model APIs

LLM Bridge is a powerful TypeScript library that provides seamless translation between different LLM provider APIs (OpenAI, Anthropic Claude, Google Gemini) while preserving zero data loss and enabling perfect reconstruction of original requests.

Tests Coverage

🚀 Why LLM Bridge Exists

The Problem

When building Infinite Chat API, we needed a way to create a proxy that supports multiple LLM providers. However, this is a difficult challenge, as I wrote in this blog post: The API layer for using intelligence is completely broken..

The particular challenges are in:

  • Manipulating and creating proxies for different LLM providers
  • Multi-modality
  • Tool call chains
  • Error handling

The Solution

LLM Bridge provides a universal format that acts as a common language between all major LLM providers, enabling:

Perfect Translation - Convert between OpenAI, Anthropic, and Google formats
Zero Data Loss - Every field is preserved with _original reconstruction
Multimodal Support - Images, documents, and rich content across providers
Tool Calling - Function calling translation between different formats
Error Handling - Unified error types with provider-specific translation
Type Safety - Full TypeScript support with strict typing

📦 Installation

npm install llm-bridge

🔧 Quick Start

Basic Usage

import { toUniversal, fromUniversal, translateBetweenProviders } from 'llm-bridge'

// Convert OpenAI request to universal format
const openaiRequest = {
  model: "gpt-4",
  messages: [
    { role: "system", content: "You are a helpful assistant" },
    { role: "user", content: "Hello!" }
  ],
  temperature: 0.7,
  max_tokens: 1000
}

const universal = toUniversal("openai", openaiRequest)
console.log(universal.provider) // "openai"
console.log(universal.model)    // "gpt-4"
console.log(universal.system)   // "You are a helpful assistant"

// Convert universal format back to any provider
const anthropicRequest = fromUniversal("anthropic", universal)
const googleRequest = fromUniversal("google", universal)

// Or translate directly between providers
const anthropicRequest2 = translateBetweenProviders("openai", "anthropic", openaiRequest)

Perfect Reconstruction

// Round-trip conversion with zero data loss
const original = { /* your OpenAI request */ }
const universal = toUniversal("openai", original)
const reconstructed = fromUniversal("openai", universal)

console.log(reconstructed === original) // Perfect equality!

🎯 Core Features

1. Universal Format Translation

LLM Bridge converts between provider-specific formats through a universal intermediate format:

OpenAI ←→ Universal ←→ Anthropic
  ↕                    ↕
Google ←→ Universal ←→ Custom

2. Multimodal Content Support

Handle images and documents seamlessly across providers:

// OpenAI format with base64 image
const openaiMultimodal = {
  model: "gpt-4-vision-preview",
  messages: [{
    role: "user",
    content: [
      { type: "text", text: "What's in this image?" },
      { 
        type: "image_url", 
        image_url: { 
          url: "...",
          detail: "high"
        }
      }
    ]
  }]
}

// Translate to Anthropic format
const anthropicMultimodal = translateBetweenProviders("openai", "anthropic", openaiMultimodal)

// Result: Anthropic-compatible format
// {
//   model: "gpt-4-vision-preview",
//   messages: [{
//     role: "user", 
//     content: [
//       { type: "text", text: "What's in this image?" },
//       { 
//         type: "image",
//         source: {
//           type: "base64",
//           media_type: "image/jpeg", 
//           data: "iVBORw0KGgoAAAA..."
//         }
//       }
//     ]
//   }]
// }

3. Function/Tool Calling Translation

Seamlessly translate tool calls between different provider formats:

// OpenAI tool calling format
const openaiWithTools = {
  model: "gpt-4",
  messages: [
    {
      role: "assistant",
      tool_calls: [{
        id: "call_123",
        type: "function", 
        function: {
          name: "get_weather",
          arguments: '{"location": "San Francisco"}'
        }
      }]
    },
    {
      role: "tool",
      content: '{"temperature": 72, "condition": "sunny"}',
      tool_call_id: "call_123"
    }
  ],
  tools: [{
    type: "function",
    function: {
      name: "get_weather",
      description: "Get weather information",
      parameters: {
        type: "object",
        properties: {
          location: { type: "string" }
        }
      }
    }
  }]
}

// Translate to Google Gemini format
const geminiWithTools = translateBetweenProviders("openai", "google", openaiWithTools)

// Result: Google-compatible tool calling format
// {
//   contents: [
//     {
//       role: "model",
//       parts: [{
//         functionCall: {
//           name: "get_weather", 
//           args: { location: "San Francisco" }
//         }
//       }]
//     },
//     {
//       role: "user",
//       parts: [{
//         functionResponse: {
//           name: "get_weather",
//           response: { temperature: 72, condition: "sunny" }
//         }
//       }]
//     }
//   ],
//   tools: [...]
// }

4. Error Handling & Translation

Unified error handling with provider-specific error translation:

import { buildUniversalError, translateError } from 'llm-bridge'

// Create a universal error
const error = buildUniversalError(
  "rate_limit_error", 
  "Rate limit exceeded",
  "openai",
  { retryAfter: 60 }
)

// Translate to different provider formats
const anthropicError = translateError(error.universal, "anthropic")
const googleError = translateError(error.universal, "google")

// Each provider gets the appropriate error format:
// OpenAI: { error: { type: "insufficient_quota", message: "Rate limit exceeded" } }
// Anthropic: { type: "error", error: { type: "rate_limit_error", message: "Rate limit exceeded" } }  
// Google: { error: { code: 429, status: "RESOURCE_EXHAUSTED", message: "Rate limit exceeded" } }

5. Provider Detection

Automatically detect which provider format you're working with:

import { detectProvider } from 'llm-bridge'

const provider1 = detectProvider({ model: "gpt-4", messages: [...] })        // "openai"
const provider2 = detectProvider({ model: "claude-3-opus", max_tokens: 100 }) // "anthropic"  
const provider3 = detectProvider({ contents: [...] })                        // "google"

🏗️ Advanced Usage

Middleware Pattern

import { toUniversal, fromUniversal } from 'llm-bridge'

// Create a universal middleware
async function universalLLMMiddleware(request: any, targetProvider: string) {
  // Convert any provider format to universal
  const sourceProvider = detectProvider(request)
  const universal = toUniversal(sourceProvider, request)
  
  // Apply universal transformations
  universal.temperature = Math.min(universal.temperature || 0, 1)
  universal.max_tokens = Math.min(universal.max_tokens || 1000, 4000)
  
  // Convert to target provider
  const targetRequest = fromUniversal(targetProvider, universal)
  
  // Make the API call
  const response = await callProvider(targetProvider, targetRequest)
  
  return response
}

// Use with any provider
const result1 = await universalLLMMiddleware(openaiRequest, "anthropic")
const result2 = await universalLLMMiddleware(anthropicRequest, "google")

Load Balancing & Fallbacks

async function robustLLMCall(request: any) {
  const providers = ["openai", "anthropic", "google"]
  
  for (const provider of providers) {
    try {
      const universal = toUniversal(detectProvider(request), request)
      const providerRequest = fromUniversal(provider, universal)
      
      return await callProvider(provider, providerRequest)
    } catch (error) {
      console.log(`${provider} failed, trying next provider...`)
      continue
    }
  }
  
  throw new Error("All providers failed")
}

Cost Optimization

import { getModelCosts, countUniversalTokens } from 'llm-bridge'

function optimizeModelChoice(request: any) {
  const universal = toUniversal(detectProvider(request), request)
  const tokens = countUniversalTokens(universal)
  
  const models = [
    { provider: "openai", model: "gpt-4o-mini" },
    { provider: "anthropic", model: "claude-3-haiku" },
    { provider: "google", model: "gemini-1.5-flash" }
  ]
  
  // Calculate cost for each model
  const costs = models.map(({ provider, model }) => {
    const modelCosts = getModelCosts(model)
    const inputCost = (tokens.inputTokens / 1000) * modelCosts.inputCostPer1K
    const outputCost = (tokens.outputTokens / 1000) * modelCosts.outputCostPer1K
    
    return { provider, model, totalCost: inputCost + outputCost }
  })
  
  // Return cheapest option
  return costs.sort((a, b) => a.totalCost - b.totalCost)[0]
}

🔌 API Reference

Core Functions

  • toUniversal(provider, body) - Convert provider format to universal
  • fromUniversal(provider, universal) - Convert universal to provider format
  • translateBetweenProviders(from, to, body) - Direct provider-to-provider translation
  • detectProvider(body) - Auto-detect provider from request format

Utility Functions

  • getModelDetails(model) - Get model information and capabilities
  • getModelCosts(model) - Get pricing information for model
  • countUniversalTokens(universal) - Estimate token usage
  • createObservabilityData(universal) - Generate telemetry data

Error Handling

  • buildUniversalError(type, message, provider, options) - Create universal error
  • translateError(error, targetProvider) - Translate error between providers
  • parseProviderError(error, provider) - Parse provider-specific errors

🎨 Examples

Multi-Provider Chat Application

import { translateBetweenProviders, detectProvider } from 'llm-bridge'

class UniversalChatBot {
  async chat(message: string, preferredProvider = "openai") {
    const request = {
      model: this.getModelForProvider(preferredProvider),
      messages: [
        { role: "system", content: "You are a helpful assistant" },
        { role: "user", content: message }
      ],
      temperature: 0.7
    }
    
    try {
      // Try preferred provider first
      return await this.callProvider(preferredProvider, request)
    } catch (error) {
      // Fallback to other providers
      const fallbacks = ["anthropic", "google", "openai"]
        .filter(p => p !== preferredProvider)
      
      for (const provider of fallbacks) {
        try {
          const translated = translateBetweenProviders(
            preferredProvider, 
            provider, 
            request
          )
          return await this.callProvider(provider, translated)
        } catch (fallbackError) {
          continue
        }
      }
      
      throw new Error("All providers failed")
    }
  }
  
  private getModelForProvider(provider: string) {
    const models = {
      openai: "gpt-4",
      anthropic: "claude-3-opus-20240229", 
      google: "gemini-1.5-pro"
    }
    return models[provider] || "gpt-4"
  }
}

Image Analysis Across Providers

async function analyzeImage(imageUrl: string, provider: string) {
  // Create OpenAI-style request
  const request = {
    model: "gpt-4-vision-preview", 
    messages: [{
      role: "user",
      content: [
        { type: "text", text: "Analyze this image in detail" },
        { type: "image_url", image_url: { url: imageUrl } }
      ]
    }]
  }
  
  // Translate to target provider
  const translated = translateBetweenProviders("openai", provider, request)
  
  // Call the provider
  return await callProvider(provider, translated)
}

// Works with any provider
const openaiResult = await analyzeImage(imageUrl, "openai")
const claudeResult = await analyzeImage(imageUrl, "anthropic") 
const geminiResult = await analyzeImage(imageUrl, "google")

🧪 Testing

Run the comprehensive test suite:

npm test

Our test suite includes:

  • ✅ 146 passing tests
  • ✅ Provider format conversion
  • ✅ Universal format translation
  • ✅ Multimodal content handling
  • ✅ Tool calling translation
  • ✅ Error handling and translation
  • ✅ Edge cases and malformed input
  • ✅ Type safety verification

📄 License

MIT License - see LICENSE file for details.

🙋‍♂️ Support


Made with ❤️ by team supermemory