npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

llm-orchestra

v0.6.0

Published

Unified Observability & Orchestration SDK for Multi-Model AI Applications

Downloads

483

Readme

LLM Orchestra

Unified Observability & Orchestration SDK for Multi-Model AI Applications

npm version CI Coverage License: MIT TypeScript Node.js


The Problem

Building production LLM applications is painful:

  • Multi-model chaos - Switching between Claude, GPT-4, Gemini requires different SDKs, error handling, and retry logic
  • Blind spots - No unified view of costs, latency, token usage across providers
  • Debugging nightmares - Tracing a request through chains, agents, and tool calls is nearly impossible
  • Cost explosions - No visibility into which prompts/models are eating your budget

The Solution

LLM Orchestra provides a unified layer for orchestrating and observing multi-model AI applications.

import { Orchestra } from 'llm-orchestra';

const orchestra = new Orchestra({
  providers: ['anthropic', 'openai', 'google'],
  observability: {
    tracing: true,
    metrics: true,
    costTracking: true
  }
});

// Unified interface - same code, any model
const response = await orchestra.complete({
  model: 'claude-3-opus',  // or 'gpt-4', 'gemini-pro'
  messages: [{ role: 'user', content: 'Hello!' }],
  fallback: ['gpt-4-turbo', 'gemini-pro'],  // Automatic failover
  tags: ['production', 'chat-feature']       // For cost allocation
});

// Full observability out of the box
console.log(response.meta);
// {
//   latency: 1234,
//   tokens: { input: 10, output: 50 },
//   cost: 0.0023,
//   traceId: 'abc-123',
//   model: 'claude-3-opus',
//   provider: 'anthropic'
// }

Key Features

Unified Multi-Model Interface

  • Single SDK for Claude, GPT-4, Gemini, Mistral, Cohere, Azure OpenAI, Llama, and more
  • Automatic failover with configurable fallback chains
  • Load balancing across providers and API keys
  • Semantic caching to reduce costs and latency

Production-Grade Observability

  • Distributed tracing - Follow requests through chains, agents, and tools
  • Real-time metrics - Latency, throughput, error rates per model/prompt
  • Cost tracking - Per-request, per-feature, per-team cost allocation
  • Prompt versioning - Track which prompts are deployed where

Agent Orchestration

  • Multi-agent coordination - Built-in patterns for agent collaboration
  • Tool call tracing - See exactly what tools agents used and why
  • Conversation memory - Pluggable memory backends with observability
  • Workflow engine - Define complex agent workflows with monitoring

Developer Experience

  • TypeScript & Python SDKs - First-class support for both
  • OpenTelemetry native - Export to any OTEL-compatible backend
  • Self-hosted or cloud - Run the dashboard locally or use our cloud
  • Framework integrations - LangChain (guide), LlamaIndex, Vercel AI SDK (guide)

Quick Start

Installation

# TypeScript/Node.js
npm install llm-orchestra

# Python
pip install llm-orchestra

Basic Usage

import { Orchestra } from 'llm-orchestra';

// Initialize with your API keys
const orchestra = new Orchestra({
  providers: {
    anthropic: { apiKey: process.env.ANTHROPIC_API_KEY },
    openai: { apiKey: process.env.OPENAI_API_KEY },
  }
});

// Make requests with full observability
const result = await orchestra.complete({
  model: 'claude-3-sonnet',
  messages: [
    { role: 'system', content: 'You are a helpful assistant.' },
    { role: 'user', content: 'Explain quantum computing in simple terms.' }
  ]
});

With Tracing

import { Orchestra, trace } from 'llm-orchestra';

// Automatic tracing for complex flows
const result = await trace('user-question-flow', async (span) => {
  // Step 1: Classify intent
  const intent = await orchestra.complete({
    model: 'claude-3-haiku',
    messages: [{ role: 'user', content: userQuestion }],
    tags: ['intent-classification']
  });

  span.addEvent('intent-classified', { intent: intent.content });

  // Step 2: Route to appropriate model
  const response = await orchestra.complete({
    model: intent.content === 'complex' ? 'claude-3-opus' : 'claude-3-sonnet',
    messages: [...],
    tags: ['response-generation']
  });

  return response;
});

Architecture

┌─────────────────────────────────────────────────────────────────┐
│                        Your Application                         │
└─────────────────────────────┬───────────────────────────────────┘
                              │
┌─────────────────────────────▼───────────────────────────────────┐
│                      LLM Orchestra SDK                          │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐             │
│  │   Routing   │  │   Caching   │  │   Tracing   │             │
│  │   Engine    │  │   Layer     │  │   Context   │             │
│  └──────┬──────┘  └──────┬──────┘  └──────┬──────┘             │
│         │                │                │                     │
│  ┌──────▼────────────────▼────────────────▼──────┐             │
│  │              Provider Adapters                 │             │
│  │  ┌─────────┐ ┌─────────┐ ┌─────────┐         │             │
│  │  │Anthropic│ │ OpenAI  │ │ Google  │ • • •   │             │
│  │  └─────────┘ └─────────┘ └─────────┘         │             │
│  └───────────────────────────────────────────────┘             │
└─────────────────────────────┬───────────────────────────────────┘
                              │
┌─────────────────────────────▼───────────────────────────────────┐
│                   Observability Backend                         │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐             │
│  │   Traces    │  │   Metrics   │  │    Costs    │             │
│  │   Store     │  │   Store     │  │   Tracker   │             │
│  └─────────────┘  └─────────────┘  └─────────────┘             │
└─────────────────────────────────────────────────────────────────┘

Roadmap

Phase 1: Core SDK (Q1 2026) ✅

  • [x] Unified provider interface (Claude, GPT-4, Gemini)
  • [x] Basic tracing and cost tracking
  • [x] TypeScript SDK
  • [x] Local dashboard

Phase 2: Production Features (Q2 2026) ✅

  • [x] Python SDK
  • [x] Semantic caching
  • [x] Automatic failover and retries
  • [x] OpenTelemetry export

Phase 3: Agent Orchestration (Q3 2026) ✅

  • [x] Multi-agent coordination primitives
  • [x] Tool call tracing
  • [x] Workflow engine
  • [x] Memory backends

Phase 4: Enterprise (Q4 2026) ✅

  • [x] Cloud dashboard (v0.3.0)
  • [x] Team management (v0.3.0)
  • [x] RBAC and audit logs (v0.3.0)

Phase 5: Security Hardening (2026+) ✅

  • [x] Security scanning (CodeQL, dependency scanning, secret detection)
  • [x] Encryption at rest (self-hosted PostgreSQL)
  • [x] Azure AD SSO/OIDC integration

Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

Development Setup

# Clone the repo
git clone https://github.com/MegaPhoenix92/llm-orchestra.git
cd llm-orchestra

# Install dependencies
npm install

# Run tests
npm test

# Start local dashboard
npm run dashboard

Cloud Dashboard Development (with Docker)

The cloud dashboard requires PostgreSQL. We provide a Docker setup for local development:

# Clone the repo
git clone https://github.com/MegaPhoenix92/llm-orchestra.git
cd llm-orchestra

# Start PostgreSQL in Docker
docker-compose up -d

# Copy environment template
cp packages/dashboard/.env.example packages/dashboard/.env

# Install dependencies
npm install

# Push database schema
npm run db:push -w llm-orchestra-dashboard

# Run all tests
npm test

# Start the cloud dashboard
npm run dev -w llm-orchestra-dashboard

Docker Services

| Service | Port | Description | |---------|------|-------------| | PostgreSQL | 5436 | Database for dashboard (mapped from container's 5432) |

Environment Variables

Copy .env.example to .env and configure:

| Variable | Description | Default | |----------|-------------|---------| | DATABASE_URL | PostgreSQL connection string | postgresql://orchestra:orchestra_dev@localhost:5436/llm_orchestra | | JWT_SECRET | Secret for JWT tokens | (required) | | ENCRYPTION_KEY | Optional encryption for secrets at rest | (optional) |

Useful Commands

# Start database
docker-compose up -d

# Stop database
docker-compose down

# Reset database (delete all data)
docker-compose down -v && docker-compose up -d

# View database logs
docker-compose logs -f postgres

# Connect to database
docker exec -it llm-orchestra-db psql -U orchestra -d llm_orchestra

Why LLM Orchestra?

vs. LangSmith

  • Open source - Self-host, no vendor lock-in
  • Multi-model native - Not just OpenAI-focused
  • Simpler integration - Works without LangChain

vs. Helicone

  • SDK-first - Not just a proxy, full orchestration
  • Agent support - Built for multi-agent systems
  • Local-first - Run everything locally for development

vs. Building In-House

  • Battle-tested - Patterns from production systems
  • Time savings - Months of work, ready to use
  • Community - Shared learnings and improvements

About

Built by TROZLAN — We're building the future of AI-powered enterprise solutions, including multi-agent orchestration and MCP infrastructure.

LLM Orchestra is born from our experience building production AI systems that coordinate multiple models and agents.

License

MIT License - See LICENSE for details.


Star this repo if you're interested in better LLM observability!

Report Bug · Request Feature · Join Discord