mcp-agent-router
v3.0.2
Published
MCP server for multi-agent orchestration - route tasks to specialized AI agents from different LLM providers
Maintainers
Readme
🔀 AgentRouter
Multi-Agent AI Orchestration for Claude Code and Beyond
AgentRouter is an MCP (Model Context Protocol) server that enables multi-agent orchestration across different AI providers. Get second opinions from GPT-5, DeepSeek, Gemini, and more—all from within Claude Code.
✨ Features
- Multi-Provider Support – Route tasks to OpenAI, Anthropic, Google Gemini, DeepSeek, Z.AI, and local Ollama models
- Specialized Agent Roles – Dedicated agents for coding, code review, critique, design, and research
- Claude Code Tasks Integration – Full integration with Claude Code's native task system (v2.1+) 🆕
- Multi-Provider Pipelines – Create task DAGs where each stage uses a different provider 🆕
- Background Workers – Spawn worker swarms to process task queues in parallel 🆕
- Pre-Built Skills – Ready-to-use patterns for common multi-provider workflows 🆕
- Subscription Mode – Use your Claude Code subscription as the orchestrator (no API key needed)
- Smart Routing – Automatically route tasks to the best-suited agent based on role
- Cost Optimization – Mix premium and budget models strategically
- MCP Native – Integrates seamlessly with Claude Code and other MCP-compatible tools
🚀 Quick Start
Installation
# Install globally
npm install -g mcp-agent-router
# Or clone and build locally
git clone https://github.com/sashabogi/agent-router.git
cd agent-router
npm install
npm run build
npm linkSetup
Run the interactive setup wizard:
agent-router setupThe wizard guides you through:
- Choosing your orchestrator – Select which AI coordinates your agents
- Adding agent providers – Configure API keys for other providers
- Assigning roles – Map providers to specialized agent roles
Connect to Claude Code
Add AgentRouter to your Claude Code MCP settings:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"agent-router": {
"command": "agent-router",
"args": ["start"]
}
}
}Restart Claude Code to activate.
🔗 Claude Code Tasks Integration (v3.0)
AgentRouter v3.0 fully integrates with Claude Code's native Tasks system (v2.1+). This enables:
Task-Aware Tools
| Tool | Description |
|------|-------------|
| execute_task | Execute a Claude Code task with AgentRouter routing |
| create_routed_task | Create a task pre-configured for a specific role |
| execute_pipeline | Create multi-step workflows with dependencies |
| claim_next_task | Worker pattern: claim and process task queues |
| get_pipeline_status | Monitor pipeline progress and results |
Multi-Provider Pipelines
Create task workflows where each stage uses the optimal provider:
execute_pipeline({
name: "feature-build",
steps: [
{ name: "research", subject: "Research patterns", role: "researcher" }, → Gemini 3 Pro
{ name: "design", subject: "Design architecture", role: "designer", dependsOn: ["research"] }, → Claude Sonnet
{ name: "implement", subject: "Implement feature", role: "coder", dependsOn: ["design"] }, → DeepSeek Reasoner
{ name: "review", subject: "Review code", role: "reviewer", dependsOn: ["implement"] } → OpenAI o3
]
})Pre-Built Skills
Install with agent-router install-skills:
| Skill | Description |
|-------|-------------|
| /multi-provider-build | Full feature development with 5-stage pipeline |
| /parallel-review | Get code reviews from multiple providers simultaneously |
| /research-implement | Research-first development pattern |
| /spawn-workers | Create worker swarms for batch processing |
Example: Multi-Provider Feature Build
You: /multi-provider-build Add JWT authentication with refresh tokens
AgentRouter creates pipeline:
├── Research (Gemini 3 Pro) → Best practices survey
├── Design (Claude Sonnet) → Architecture design
├── Implement (DeepSeek Reasoner) → Code implementation
├── Review (OpenAI o3) → Bug detection
└── Critique (GPT-5.2) → Security analysis
Each step routes to its configured provider automatically.📖 Full Tasks Integration Guide →
📦 Supported Providers
| Provider | Models | Access Mode | Cost | |----------|--------|-------------|------| | Anthropic | Claude Opus/Sonnet/Haiku 4.5 | Subscription or API | $$$ | | OpenAI | GPT-5.2, GPT-5.1, GPT-5, o3 | API | $$$ | | Google Gemini | Gemini 3 Pro/Flash, 2.5 Pro/Flash | API | $$ | | DeepSeek | V3.2 Reasoner, V3.2 Chat | API | $ | | Z.AI (GLM) | GLM-4.7, GLM-4.7 FlashX/Flash | API | $ | | Ollama | Llama 3.2, Qwen, CodeLlama, etc. | Local | Free |
Model Highlights (January 2026)
- Claude Sonnet 4.5 – Best for orchestration and complex coding tasks
- GPT-5.1 – Excellent for code review with adaptive reasoning
- DeepSeek V3.2 Reasoner – Outstanding reasoning at 1/10th the cost
- GLM-4.7 – Strong agentic coding, 84.7% on τ²-Bench
- Gemini 3 Pro – Great for research and multimodal tasks
🎭 Agent Roles
AgentRouter supports these specialized roles:
| Role | Purpose | Recommended Provider | |------|---------|---------------------| | Orchestrator | Coordinates all agents, routes tasks | Anthropic (subscription) | | Coder | Writes, refactors, implements code | DeepSeek, Anthropic | | Critic | Challenges assumptions, finds flaws | DeepSeek Reasoner | | Reviewer | Code review for bugs, security, performance | OpenAI o3 | | Designer | UI/UX feedback and design review | Claude Sonnet | | Researcher | Fact-finding and research tasks | Google Gemini |
⚙️ Configuration
Configuration is stored at ~/.config/agent-router/config.yaml
Example Configuration (v3.0)
# AgentRouter Configuration v3
version: "3.0"
defaults:
temperature: 0.7
max_tokens: 4096
timeout_ms: 60000
# NEW: Tasks integration settings
tasks:
enabled: true
defaults:
autoComplete: true
timeoutMs: 300000
providers:
anthropic:
access_mode: subscription # Uses Claude Code session
default_model: claude-sonnet-4-5-20250929
openai:
access_mode: api
api_key: ${OPENAI_API_KEY}
default_model: gpt-5.1
google:
access_mode: api
api_key: ${GEMINI_API_KEY}
default_model: gemini-3-pro
deepseek:
access_mode: api
api_key: ${DEEPSEEK_API_KEY}
default_model: deepseek-reasoner
roles:
orchestrator:
provider: anthropic
model: claude-sonnet-4-5-20250929
coder:
provider: deepseek
model: deepseek-reasoner
critic:
provider: deepseek
model: deepseek-reasoner
reviewer:
provider: openai
model: o3
designer:
provider: anthropic
model: claude-sonnet-4-5-20250929
researcher:
provider: google
model: gemini-3-proEnvironment Variables
export OPENAI_API_KEY="sk-..."
export ANTHROPIC_API_KEY="sk-ant-..."
export GEMINI_API_KEY="AIza..."
export DEEPSEEK_API_KEY="sk-..."
export ZAI_API_KEY="..."🖥️ CLI Commands
# Interactive setup wizard
agent-router setup
# Start the MCP server
agent-router start
# Install skills to Claude Code
agent-router install-skills
# Create default config file
agent-router init
# Validate configuration
agent-router validate
# List configured roles
agent-router list-roles
# Provider management
agent-router provider add [name] # Add a provider
agent-router provider test [name] # Test connection
agent-router provider list # List providers
# Help
agent-router --help
agent-router --version🔄 How It Works
Basic Routing
┌─────────────────────────────────────────────────────────────┐
│ Claude Code │
│ (Your Interface) │
└─────────────────────┬───────────────────────────────────────┘
│ MCP Protocol
▼
┌─────────────────────────────────────────────────────────────┐
│ AgentRouter │
│ │
│ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
│ │ Coder │ │ Critic │ │Reviewer │ │Designer │ │
│ └────┬────┘ └────┬────┘ └────┬────┘ └────┬────┘ │
└───────┼────────────┼────────────┼────────────┼──────────────┘
│ │ │ │
▼ ▼ ▼ ▼
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│DeepSeek │ │DeepSeek │ │ OpenAI │ │ Claude │
└─────────┘ └─────────┘ └─────────┘ └─────────┘With Tasks Integration (v3.0)
┌─────────────────────────────────────────────────────────────┐
│ Claude Code v2.1+ │
│ ┌─────────────────────────────────────────────┐ │
│ │ TaskCreate → TaskUpdate → TaskList │ │
│ │ Native Task State │ │
│ └──────────────────┬──────────────────────────┘ │
└────────────────────────┼────────────────────────────────────┘
│ MCP Protocol
▼
┌────────────────────────────────────────────────────────────┐
│ AgentRouter v3.0 │
│ ┌──────────────────────────────────────────────────────┐ │
│ │ Task Integration Layer │ │
│ │ execute_task | execute_pipeline | claim_next_task │ │
│ └──────────────────────────────────────────────────────┘ │
│ ┌──────────────────────────────────────────────────────┐ │
│ │ Router Engine + Providers │ │
│ └──────────────────────────────────────────────────────┘ │
└────────────────────────────────────────────────────────────┘💡 Usage Examples
Simple: Get a Code Review
You: Can you have the reviewer check this function for issues?
AgentRouter: Routing to reviewer (openai/o3)...
Reviewer: I found 3 issues in your function:
1. Line 15: Potential SQL injection vulnerability...Intermediate: Compare Multiple Providers
You: Compare how different providers would approach this refactoring.
AgentRouter: Running compare_agents with coder, reviewer, critic...
Results from 3 providers:
- DeepSeek Reasoner: Focus on algorithmic optimization...
- OpenAI o3: Suggests architectural changes...
- DeepSeek Reasoner: Questions the fundamental approach...Advanced: Multi-Provider Pipeline
You: /multi-provider-build Add rate limiting with Redis
AgentRouter: Creating 5-step pipeline...
Step 1/5: Research (Gemini 3 Pro)
└── Surveyed rate limiting patterns: token bucket, sliding window...
Step 2/5: Design (Claude Sonnet)
└── Architecture: middleware + Redis sorted sets + configuration...
Step 3/5: Implement (DeepSeek Reasoner)
└── Created rate-limiter.ts, redis-store.ts, middleware.ts...
Step 4/5: Review (OpenAI o3)
└── Found edge case in concurrent request handling...
Step 5/5: Critique (GPT-5.2)
└── Security OK. Suggested: add request logging for compliance...
Pipeline complete! All files in ./src/rate-limiting/🔒 Security
- API keys are masked during setup wizard input
- Environment variable interpolation keeps secrets out of config files
- Local Ollama option for air-gapped/private environments
- Task isolation – each pipeline execution is scoped
🛠️ Development
# Install dependencies
npm install
# Build
npm run build
# Run tests
npm test
# Type checking
npm run typecheck
# Development mode (watch)
npm run devProject Structure
agent-router/
├── src/
│ ├── cli/ # CLI commands and setup wizard
│ ├── config/ # Configuration management
│ ├── mcp/ # MCP protocol implementation
│ ├── providers/ # Provider integrations
│ ├── router/ # Request routing logic
│ ├── tasks/ # Task integration layer (v3.0)
│ ├── translation/ # API translation layer
│ └── types.ts # TypeScript type definitions
├── docs/ # Documentation
├── skills/ # Pre-built Claude Code skills
├── tests/ # Test suites
└── config/ # Default configurations📚 Documentation
- Tasks Integration Guide 🆕
- Full Design Document 🆕
- Architecture Overview
- Provider Setup Guide
- Configuration Reference
- API Reference
🤝 Contributing
Contributions are welcome! Please read our contributing guidelines before submitting PRs.
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
📄 License
MIT License - see LICENSE for details.
🙏 Acknowledgments
- Anthropic for Claude and the MCP protocol
- Model Context Protocol specification
- All the AI providers making this multi-agent future possible
Built with ❤️ by Sasha Bogojevic
