n8n-nodes-hebbrix
v1.0.0
Published
n8n community node for Hebbrix - AI Memory Layer for intelligent applications
Downloads
85
Maintainers
Readme
n8n-nodes-hebbrix
Hebbrix community nodes for n8n - AI Memory Layer integration for intelligent workflow automation.
Overview
This package provides n8n nodes for integrating with Hebbrix, an AI Memory Layer that enables you to store, search, and recall knowledge for intelligent applications.
Features
- Memory Management: Create, update, delete, and retrieve memories
- AI-Powered Search: Hybrid search combining vector, BM25, and graph-based retrieval
- Chat Completions: AI chat with automatic memory context injection
- Document Processing: Upload and process documents into memories
- Collection Management: Organize memories into collections
- User Profiles: Manage AI personalization profiles
- Real-time Webhooks: Trigger workflows on memory events with HMAC signature verification
Installation
Community Node Installation (Recommended)
- Go to Settings > Community Nodes
- Select Install
- Enter
n8n-nodes-hebbrix - Click Install
Manual Installation
# Navigate to your n8n installation
cd ~/.n8n
# Install the package
npm install n8n-nodes-hebbrixDocker Installation
Add to your docker-compose.yml:
environment:
- N8N_CUSTOM_EXTENSIONS=n8n-nodes-hebbrixOr install via the CLI:
docker exec -it n8n npm install n8n-nodes-hebbrixAuthentication
- Get your Hebbrix API key from the dashboard at https://app.hebbrix.com
- In n8n, go to Credentials > New Credential
- Search for "Hebbrix API"
- Enter your API key (starts with
mem_sk_) - Optionally customize the API URL for self-hosted instances
Nodes
Hebbrix Node
The main action node for interacting with the Hebbrix API.
Resources & Operations
Memory | Operation | Description | |-----------|-------------| | Create | Create a new memory | | Create Many | Batch create multiple memories | | Get | Retrieve a specific memory | | Get Many | List memories with filters | | Update | Update an existing memory | | Delete | Delete a memory |
Search | Operation | Description | |-----------|-------------| | Hybrid | AI-powered hybrid search (vector + BM25 + graph) | | Vector | Pure vector similarity search | | BM25 | Keyword-based BM25 search |
Chat | Operation | Description | |-----------|-------------| | Complete | Chat completion with memory context | | Ask | Simple question answering with memory retrieval |
Document | Operation | Description | |-----------|-------------| | Upload | Upload a document for processing | | Get Status | Check document processing status |
Collection | Operation | Description | |-----------|-------------| | Create | Create a new collection | | Get | Get collection details | | Get Many | List all collections | | Delete | Delete a collection |
Profile | Operation | Description | |-----------|-------------| | Get | Get user profile for AI personalization | | Update | Update profile preferences |
Hebbrix Trigger Node
Webhook-based trigger node for real-time event handling.
Events
| Event | Description | |-------|-------------| | memory.created | Triggered when a new memory is created | | memory.updated | Triggered when a memory is updated | | memory.deleted | Triggered when a memory is deleted | | memory.tier_changed | Triggered when memory tier changes (hot/warm/cold) | | search.completed | Triggered after a search is performed | | collection.created | Triggered when a collection is created | | collection.updated | Triggered when a collection is updated | | rl.training_completed | Triggered when RL model training completes | | user.feedback_received | Triggered when user feedback is received |
Security Features
- HMAC-SHA256 Signatures: All webhook payloads are signed
- Timestamp Validation: 5-minute window to prevent replay attacks
- Constant-time Comparison: Prevents timing attacks
Usage Examples
Create a Memory from Email
{
"nodes": [
{
"name": "Email Trigger",
"type": "n8n-nodes-base.emailTrigger"
},
{
"name": "Hebbrix",
"type": "n8n-nodes-hebbrix.hebbrix",
"parameters": {
"resource": "memory",
"operation": "create",
"content": "={{$node[\"Email Trigger\"].json[\"subject\"]}}: {{$node[\"Email Trigger\"].json[\"text\"]}}",
"sourceType": "email",
"importance": 0.7
}
}
]
}Search and Reply with AI
{
"nodes": [
{
"name": "Slack Trigger",
"type": "n8n-nodes-base.slackTrigger"
},
{
"name": "Hebbrix Chat",
"type": "n8n-nodes-hebbrix.hebbrix",
"parameters": {
"resource": "chat",
"operation": "complete",
"message": "={{$node[\"Slack Trigger\"].json[\"text\"]}}",
"model": "gpt-4o",
"useMemory": true,
"useProfile": true
}
},
{
"name": "Slack Reply",
"type": "n8n-nodes-base.slack",
"parameters": {
"text": "={{$node[\"Hebbrix Chat\"].json[\"response\"]}}"
}
}
]
}Webhook Trigger to Process New Memories
{
"nodes": [
{
"name": "Memory Created",
"type": "n8n-nodes-hebbrix.hebbrixTrigger",
"parameters": {
"events": ["memory.created"]
}
},
{
"name": "IF High Importance",
"type": "n8n-nodes-base.if",
"parameters": {
"conditions": {
"number": [
{
"value1": "={{$node[\"Memory Created\"].json[\"importance\"]}}",
"operation": "larger",
"value2": 0.8
}
]
}
}
},
{
"name": "Send Notification",
"type": "n8n-nodes-base.slack"
}
]
}Configuration
Environment Variables
| Variable | Description | Default |
|----------|-------------|---------|
| HEBBRIX_API_URL | Base URL for the Hebbrix API | https://api.hebbrix.com |
Self-Hosted Setup
For self-hosted Hebbrix instances, update the API URL in your credentials:
API URL: https://your-hebbrix-instance.comDevelopment
Building from Source
# Clone the repository
git clone https://github.com/hebbrix/n8n-nodes-hebbrix.git
cd n8n-nodes-hebbrix
# Install dependencies
npm install
# Build the project
npm run build
# Link for local development
npm link
# In your n8n installation
npm link n8n-nodes-hebbrixRunning Tests
npm testProject Structure
n8n-nodes-hebbrix/
├── credentials/
│ └── HebbrixApi.credentials.ts # API authentication
├── nodes/
│ ├── Hebbrix/
│ │ ├── Hebbrix.node.ts # Main action node
│ │ └── hebbrix.svg # Node icon
│ └── HebbrixTrigger/
│ └── HebbrixTrigger.node.ts # Webhook trigger node
├── package.json
├── tsconfig.json
└── README.mdAPI Reference
For detailed API documentation, visit: https://docs.hebbrix.com/api
Support
- Documentation: https://docs.hebbrix.com
- Issues: https://github.com/hebbrix/n8n-nodes-hebbrix/issues
- Discord: https://discord.gg/hebbrix
License
MIT License - see LICENSE for details.
Changelog
v1.0.0
- Initial release
- Memory CRUD operations
- Hybrid, vector, and BM25 search
- Chat completions with memory context
- Document processing
- Collection management
- Webhook triggers with HMAC verification
