n8n-nodes-langfuse-prompt
v1.3.4
Published
Enhanced Langfuse nodes for n8n with advanced Prompt Management features and MCP integration
Maintainers
Readme
n8n-nodes-langfuse-prompt
Enhanced Langfuse integration for n8n with advanced Prompt Management capabilities.
Table of Contents
- Features
- Installation
- MCP Server Integration
- Credentials Setup
- Operations
- Usage Examples
- Docker Setup
- Development
- Troubleshooting
- License
Features
Comprehensive Prompt Management
- Get Prompt: Retrieve specific prompts by name, version, or label
- List Prompts: Browse and search all prompts with advanced filtering
- Create Prompt: Create new text or chat prompts directly from n8n workflows
Advanced Search Capabilities
- Filter by Name: Exact match filtering by prompt name
- Smart Filtering: Filter by tags, labels, and versions
- Pagination Support: Handle large prompt collections efficiently
Modern Integration Features
- MCP Server Compatible: Works as a tool in Model Context Protocol workflows
- Version Control: Retrieve specific prompt versions and create new versions
- Bulk Operations: Process multiple prompts efficiently
- Type Support: Handle both text and chat-style prompts

Installation
Method 1: Community Nodes (Recommended)
For n8n v0.187+, install directly from the UI:
- Go to Settings → Community Nodes
- Click Install
- Enter
n8n-nodes-langfuse-prompt - Click Install
Method 2: Manual Installation
# Navigate to your n8n installation directory
cd ~/.n8n
# Install the package
npm install n8n-nodes-langfuse-prompt
# Restart n8nMethod 3: Docker
Add to your docker-compose.yml:
environment:
N8N_NODES_INCLUDE: "n8n-nodes-langfuse-prompt"MCP Server Integration
This node supports Model Context Protocol (MCP), enabling AI agents to interact directly with Langfuse prompts in n8n workflows.

MCP Features
- Tool Integration: AI agents can use this node as a tool
- Dynamic Access: Agents can retrieve, search, and create prompts
- Workflow Automation: Seamless integration with n8n's MCP Server Trigger
MCP Usage Example
// AI agent can call:
{
"operation": "get",
"promptName": "customer-support-prompt",
"label": "production"
}
// Or filter prompts:
{
"operation": "list",
"nameFilter": "customer-support",
"labelFilter": "production"
}Credentials Setup
Create a Langfuse API credential with:
- Base URL: Your Langfuse instance (e.g., https://cloud.langfuse.com)
- Public Key: Your Langfuse public key
- Secret Key: Your Langfuse secret key
Find your API keys in Langfuse project settings.
Operations
Get Prompt
Retrieve a specific prompt by name.
Required Parameters:
- promptName: The prompt name
Optional Parameters:
- label: Version label (e.g., "production")
- version: Specific version number
List Prompts
Browse and filter your prompts using Langfuse API v2 parameters.
Optional Parameters:
- nameFilter: Filter by exact prompt name match
- tagFilter: Filter by specific tag
- labelFilter: Filter by specific label
- versionFilter: Filter by version number
- page: Page number for pagination
- limit: Items per page (1-100, default 50)
Create Prompt
Create new text or chat prompts.
Required Parameters:
- createPromptName: Unique prompt name
- promptType: "text" or "chat"
- promptContent: Content for text prompts
- chatMessages: JSON array for chat prompts
Optional Parameters:
- labels: Comma-separated labels
- tags: Comma-separated tags
- config: JSON configuration object
- commitMessage: Version commit message
Usage Examples
Example 1: Get a Production Prompt
{
"operation": "get",
"promptName": "customer-service-template",
"label": "production"
}Example 2: Filter Prompts by Tag
{
"operation": "list",
"tagFilter": "customer-support",
"labelFilter": "production",
"limit": 10
}Example 3: Create a Chat Prompt
{
"operation": "create",
"createPromptName": "support-agent-v2",
"promptType": "chat",
"chatMessages": [
{
"role": "system",
"content": "You are a helpful customer support agent..."
},
{
"role": "user",
"content": "{{customer_question}}"
}
],
"labels": "production,support",
"tags": "customer-service,chat"
}Example 4: Filter by Tags and Date
{
"operation": "list",
"tagFilter": "production",
"limit": 20,
"page": 1
}Docker Setup
Option 1: Environment Variable
FROM n8nio/n8n:latest
ENV N8N_NODES_INCLUDE=n8n-nodes-langfuse-promptOption 2: Docker Compose
version: '3.8'
services:
n8n:
image: n8nio/n8n:latest
environment:
- N8N_NODES_INCLUDE=n8n-nodes-langfuse-prompt
ports:
- "5678:5678"
volumes:
- n8n_data:/home/node/.n8n
volumes:
n8n_data:Option 3: Custom Build
FROM n8nio/n8n:latest
USER root
RUN npm install -g n8n-nodes-langfuse-prompt
USER node
ENV N8N_NODES_INCLUDE=n8n-nodes-langfuse-promptDevelopment
Prerequisites
- Node.js 16+
- n8n CLI: npm install -g n8n
Setup
git clone https://github.com/rlquilez/n8n-nodes-langfuse-prompt.git
cd n8n-nodes-langfuse-prompt
npm install
npm run build
npm linkTesting
# In your n8n directory
npm link n8n-nodes-langfuse-prompt
n8n startTroubleshooting
Common Issues
Node not appearing?
- Restart n8n completely
- Check n8n version compatibility
- Verify package installation
Filtering not working?
- Ensure filter parameters are correctly formatted
- Check that values match exactly (especially for name filter)
- Verify Langfuse instance version compatibility
API connection issues?
- Verify Langfuse credentials
- Check instance URL accessibility
- Ensure API keys have proper permissions
Getting Help
- Check Issues
- Review Langfuse API docs
- Join n8n Community
License
MIT License - see LICENSE.md for details.
Acknowledgments
Based on the original n8n-nodes-langfuse by the Langfuse team.
Built for the n8n and Langfuse communities
