nascoder-azure-ai-mcp-server
v2.1.1
Published
Professional Azure AI Foundry MCP Server - Developed by Freelancer Nasim with comprehensive testing and security best practices.
Maintainers
Readme
🛡️ Nascoder Azure AI Foundry MCP Server v2.0
Professional Azure AI Integration - Thoroughly Tested & Production Ready
Developed by Freelancer Nasim with comprehensive testing and security best practices.
🎯 What This Package Delivers
A bulletproof Model Context Protocol (MCP) server that provides seamless integration with Azure AI services. Every tool is manually tested and production-ready.
✅ 9 Fully Tested Tools:
ask_azure_ai- Intelligent chat with auto-routing to best available modelget_model_info- Real-time model deployment informationhealth_check- Service health monitoring and diagnosticslist_capabilities- Available capabilities and featuresanalyze_image- Computer vision analysis (latest API v2024-02-01)translate_text- Multi-language text translationcheck_content_safety- Content moderation and safety analysisanalyze_language- Language detection and sentiment analysisanalyze_document- Document processing and text extraction
🚀 Quick Start
Installation
npm install -g nascoder-azure-ai-mcp-serverPrerequisites
You need your own Azure AI resources:
- Azure AI Project (AI Foundry)
- Azure Cognitive Services
- Valid API keys and endpoints
Environment Setup
export AZURE_AI_PROJECT_ENDPOINT="your-azure-ai-project-endpoint"
export AZURE_AI_INFERENCE_API_KEY="your-azure-ai-api-key"
export AZURE_AI_SERVICES_ENDPOINT="your-azure-services-endpoint"
export AZURE_REGION="your-azure-region"
export AZURE_RESOURCE_GROUP="your-resource-group"Amazon Q CLI Integration
Add to ~/.aws/amazonq/mcp.json:
{
"mcpServers": {
"nascoder_azure_ai": {
"command": "node",
"args": [
"/opt/homebrew/lib/node_modules/nascoder-azure-ai-mcp-server/dist/server.js"
],
"env": {
"AZURE_AI_PROJECT_ENDPOINT": "your-endpoint-here",
"AZURE_AI_INFERENCE_API_KEY": "your-key-here",
"AZURE_AI_SERVICES_ENDPOINT": "your-services-endpoint-here",
"AZURE_REGION": "your-region-here",
"AZURE_RESOURCE_GROUP": "your-resource-group-here"
}
}
}
}🔧 Azure Setup Guide
1. Create Azure AI Project
- Go to Azure AI Foundry
- Create a new AI Project
- Note your project endpoint
2. Get API Keys
- Navigate to your AI Project settings
- Copy the API key and endpoint
- Set up your environment variables
3. Deploy Models
Deploy these models in your Azure AI Project:
- GPT-4 or GPT-3.5-turbo for chat
- GPT-4-vision for image analysis
- Text translation service
🧪 Quality Assurance
API Version Updates (v2.0)
- ✅ Computer Vision: Updated to
2024-02-01(latest stable) - ✅ Document Intelligence: Updated to
2024-07-31-preview - ✅ Content Safety: Updated to
2024-09-01 - ✅ Language Services: Updated to
2023-04-01 - ✅ Translator: Using stable
v3.0
Security Features
- ✅ No hardcoded credentials
- ✅ Environment variable based configuration
- ✅ Input sanitization
- ✅ Error handling and graceful failures
📊 Tool Examples
Basic Chat
// Tool: ask_azure_ai
{
"query": "What is machine learning?",
"model": "gpt-4" // optional
}Image Analysis
// Tool: analyze_image
{
"imageUrl": "https://example.com/image.jpg"
}Text Translation
// Tool: translate_text
{
"text": "Hello world",
"targetLanguage": "es",
"sourceLanguage": "en" // optional
}🛠️ Troubleshooting
Common Issues
Server won't start:
- Check your Azure credentials
- Verify your Azure AI Project is active
- Ensure models are deployed
API errors:
- Verify your API keys are valid
- Check your Azure subscription status
- Ensure proper permissions
📞 Support
- Issues: GitHub Issues
- Documentation: GitHub Wiki
- Email: [email protected]
📄 License
MIT License - See LICENSE file for details.
🛡️ Built with pride by Freelancer Nasim - Where quality meets reliability!
Bring your own Azure resources and enjoy professional AI integration!
