npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

openmed

v0.0.1

Published

OpenMed - Medical AI toolkit

Readme

OpenMed

Production-ready medical NLP toolkit powered by state-of-the-art transformers

Transform clinical text into structured insights with a single line of code. OpenMed delivers enterprise-grade entity extraction, assertion detection, and medical reasoning—no vendor lock-in, no compromise on accuracy.

License Python 3.10+ arXiv Open In Colab

from openmed import analyze_text

result = analyze_text(
    "Patient started on imatinib for chronic myeloid leukemia.",
    model_name="disease_detection_superclinical"
)

for entity in result.entities:
    print(f"{entity.label:<12} {entity.text:<35} {entity.confidence:.2f}")
# DISEASE      chronic myeloid leukemia            0.98
# DRUG         imatinib                            0.95

✨ Why OpenMed?

  • Specialized Models: 12+ curated medical NER models outperforming proprietary solutions
  • HIPAA-Compliant PII Detection: Smart de-identification with all 18 Safe Harbor identifiers
  • One-Line Deployment: From prototype to production in minutes
  • Interactive TUI: Beautiful terminal interface for rapid experimentation
  • Batch Processing: Multi-file workflows with progress tracking
  • Production-Ready: Configuration profiles, profiling tools, and medical-aware tokenization
  • Zero Lock-In: Apache 2.0 licensed, runs on your infrastructure

Quick Start

Installation

# Install with Hugging Face support
pip install openmed[hf]

# Or try the interactive TUI
pip install openmed[tui]

Three Ways to Use OpenMed

1️⃣ Python API — One-liner for scripts and notebooks

from openmed import analyze_text

result = analyze_text(
    "Patient received 75mg clopidogrel for NSTEMI.",
    model_name="pharma_detection_superclinical"
)

2️⃣ Interactive TUI — Visual workbench for exploration

openmed  # Launch the TUI directly

TUI Screenshot

3️⃣ CLI Automation — Batch processing for production

# Process a directory of clinical notes
openmed batch --input-dir ./notes --output results.json

# Use configuration profiles
openmed config profile-use prod

Interactive Terminal Interface

The OpenMed TUI provides a full-featured workbench that runs in any terminal:

  • Real-time entity extraction with Ctrl+Enter
  • Color-coded entity highlighting
  • Live configuration tuning (threshold, grouping, tokenization)
  • Confidence visualization with progress bars
  • Analysis history and export (JSON, CSV)
  • Hot-swappable models and profiles
  • File browser for batch analysis
# Launch with custom settings
openmed tui --model disease_detection_superclinical --confidence-threshold 0.7

📖 Full TUI Documentation


Key Features

Core Capabilities

  • Curated Model Registry: Metadata-rich catalog with 12+ specialized medical NER models
  • PII Detection & De-identification: HIPAA-compliant de-identification with smart entity merging
  • Medical-Aware Tokenization: Clean handling of clinical patterns (COVID-19, CAR-T, IL-6)
  • Advanced NER Processing: Confidence filtering, entity grouping, and span alignment
  • Multiple Output Formats: Dict, JSON, HTML, CSV for any downstream system

Production Tools (v0.4.0)

  • Batch Processing: Multi-text and multi-file workflows with progress tracking
  • Configuration Profiles: dev/prod/test/fast presets with flexible overrides
  • Performance Profiling: Built-in inference timing and bottleneck analysis
  • Interactive TUI: Rich terminal UI for rapid iteration

Documentation

Comprehensive guides available at openmed.life/docs

Quick links:


Models

OpenMed includes a curated registry of 12+ specialized medical NER models:

| Model | Specialization | Entity Types | Size | |-------|---------------|--------------|------| | disease_detection_superclinical | Disease & Conditions | DISEASE, CONDITION, DIAGNOSIS | 434M | | pharma_detection_superclinical | Drugs & Medications | DRUG, MEDICATION, TREATMENT | 434M | | pii_detection_superclinical | PII & De-identification | NAME, DATE, SSN, PHONE, EMAIL, ADDRESS | 434M | | anatomy_detection_electramed | Anatomy & Body Parts | ANATOMY, ORGAN, BODY_PART | 109M | | gene_detection_genecorpus | Genes & Proteins | GENE, PROTEIN | 109M |

📖 Full Model Catalog


Advanced Usage

PII Detection & De-identification (v0.5.0)

from openmed import extract_pii, deidentify

# Extract PII entities with smart merging (default)
result = extract_pii(
    "Patient: John Doe, DOB: 01/15/1970, SSN: 123-45-6789",
    model_name="pii_detection_superclinical",
    use_smart_merging=True  # Prevents entity fragmentation
)

# De-identify with multiple methods
masked = deidentify(text, method="mask")        # [NAME], [DATE]
removed = deidentify(text, method="remove")     # Complete removal
replaced = deidentify(text, method="replace")   # Synthetic data
hashed = deidentify(text, method="hash")        # Cryptographic hashing
shifted = deidentify(text, method="shift_dates", date_shift_days=180)

Smart Entity Merging (NEW in v0.5.0): Fixes tokenization fragmentation by merging split entities like dates (01/15/1970 instead of 01 + /15/1970), ensuring production-ready de-identification.

HIPAA Compliance: Covers all 18 Safe Harbor identifiers with configurable confidence thresholds.

📓 Complete PII Notebook | 📖 Documentation

Batch Processing

# Process multiple files with progress tracking
openmed batch --input-dir ./clinical_notes --pattern "*.txt" --recursive

# Use profiles for different environments
openmed config profile-use prod
openmed batch --input-files note1.txt note2.txt --output results.json

Configuration Profiles

from openmed import analyze_text

# Apply a profile programmatically
result = analyze_text(
    text,
    model_name="disease_detection_superclinical",
    config_profile="prod"  # High confidence, grouped entities
)

Performance Profiling

from openmed import analyze_text, profile_inference

with profile_inference() as profiler:
    result = analyze_text(text, model_name="disease_detection_superclinical")

print(profiler.summary())  # Inference time, bottlenecks, recommendations

📖 More Examples


Contributing

We welcome contributions! Whether it's bug reports, feature requests, or pull requests.


License

OpenMed is released under the Apache-2.0 License.


Citation

If you use OpenMed in your research, please cite:

@misc{panahi2025openmedneropensourcedomainadapted,
      title={OpenMed NER: Open-Source, Domain-Adapted State-of-the-Art Transformers for Biomedical NER Across 12 Public Datasets},
      author={Maziyar Panahi},
      year={2025},
      eprint={2508.01630},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2508.01630},
}

Star History

If you find OpenMed useful, consider giving it a star ⭐ to help others discover it!


Built with ❤️ by the OpenMed team

🌐 Website📚 Documentation🐦 X/Twitter💬 LinkedIn