npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

osrm

v5.26.0

Published

The Open Source Routing Machine is a high performance routing engine written in C++14 designed to run on OpenStreetMap data.

Downloads

3,728

Readme

Open Source Routing Machine

| Linux / macOS | Windows | Code Coverage | | ------------- | ------- | ------------- | | Travis | AppVeyor | Codecov |

High performance routing engine written in C++14 designed to run on OpenStreetMap data.

The following services are available via HTTP API, C++ library interface and NodeJs wrapper:

  • Nearest - Snaps coordinates to the street network and returns the nearest matches
  • Route - Finds the fastest route between coordinates
  • Table - Computes the duration or distances of the fastest route between all pairs of supplied coordinates
  • Match - Snaps noisy GPS traces to the road network in the most plausible way
  • Trip - Solves the Traveling Salesman Problem using a greedy heuristic
  • Tile - Generates Mapbox Vector Tiles with internal routing metadata

To quickly try OSRM use our demo server which comes with both the backend and a frontend on top.

For a quick introduction about how the road network is represented in OpenStreetMap and how to map specific road network features have a look at this guide about mapping for navigation.

Related Project-OSRM repositories:

Documentation

Full documentation

Contact

  • IRC: irc.oftc.net, channel: #osrm (Webchat)
  • Mailinglist: https://lists.openstreetmap.org/listinfo/osrm-talk

Quick Start

The easiest and quickest way to setup your own routing engine is to use Docker images we provide.

There are two pre-processing pipelines available:

  • Contraction Hierarchies (CH)
  • Multi-Level Dijkstra (MLD)

we recommend using MLD by default except for special use-cases such as very large distance matrices where CH is still a better fit for the time being. In the following we explain the MLD pipeline. If you want to use the CH pipeline instead replace osrm-partition and osrm-customize with a single osrm-contract and change the algorithm option for osrm-routed to --algorithm ch.

Using Docker

We base our Docker images (backend, frontend) on Debian and make sure they are as lightweight as possible.

Download OpenStreetMap extracts for example from Geofabrik

wget http://download.geofabrik.de/europe/germany/berlin-latest.osm.pbf

Pre-process the extract with the car profile and start a routing engine HTTP server on port 5000

docker run -t -v "${PWD}:/data" osrm/osrm-backend osrm-extract -p /opt/car.lua /data/berlin-latest.osm.pbf

The flag -v "${PWD}:/data" creates the directory /data inside the docker container and makes the current working directory "${PWD}" available there. The file /data/berlin-latest.osm.pbf inside the container is referring to "${PWD}/berlin-latest.osm.pbf" on the host.

docker run -t -v "${PWD}:/data" osrm/osrm-backend osrm-partition /data/berlin-latest.osrm
docker run -t -v "${PWD}:/data" osrm/osrm-backend osrm-customize /data/berlin-latest.osrm

Note that berlin-latest.osrm has a different file extension.

docker run -t -i -p 5000:5000 -v "${PWD}:/data" osrm/osrm-backend osrm-routed --algorithm mld /data/berlin-latest.osrm

Make requests against the HTTP server

curl "http://127.0.0.1:5000/route/v1/driving/13.388860,52.517037;13.385983,52.496891?steps=true"

Optionally start a user-friendly frontend on port 9966, and open it up in your browser

docker run -p 9966:9966 osrm/osrm-frontend
xdg-open 'http://127.0.0.1:9966'

In case Docker complains about not being able to connect to the Docker daemon make sure you are in the docker group.

sudo usermod -aG docker $USER

After adding yourself to the docker group make sure to log out and back in again with your terminal.

We support the following images on Docker Cloud:

Name | Description -----|------ latest | master compiled with release flag latest-assertions | master compiled with with release flag, assertions enabled and debug symbols latest-debug | master compiled with debug flag <tag> | specific tag compiled with release flag <tag>-debug | specific tag compiled with debug flag

Building from Source

The following targets Ubuntu 16.04. For instructions how to build on different distributions, macOS or Windows see our Wiki.

Install dependencies

sudo apt install build-essential git cmake pkg-config \
libbz2-dev libxml2-dev libzip-dev libboost-all-dev \
lua5.2 liblua5.2-dev libtbb-dev

Compile and install OSRM binaries

mkdir -p build
cd build
cmake ..
cmake --build .
sudo cmake --build . --target install

Request Against the Demo Server

Read the API usage policy.

Simple query with instructions and alternatives on Berlin:

curl "https://router.project-osrm.org/route/v1/driving/13.388860,52.517037;13.385983,52.496891?steps=true&alternatives=true"

Using the Node.js Bindings

The Node.js bindings provide read-only access to the routing engine. We provide API documentation and examples here.

You will need a modern libstdc++ toolchain (>= GLIBCXX_3.4.20) for binary compatibility if you want to use the pre-built binaries. For older Ubuntu systems you can upgrade your standard library for example with:

sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo apt-get update -y
sudo apt-get install -y libstdc++-5-dev

You can install the Node.js bindings via npm install osrm or from this repository either via

npm install

which will check and use pre-built binaries if they're available for this release and your Node version, or via

npm install --build-from-source

to always force building the Node.js bindings from source.

For usage details have a look these API docs.

An exemplary implementation by a 3rd party with Docker and Node.js can be found here.

References in publications

When using the code in a (scientific) publication, please cite

@inproceedings{luxen-vetter-2011,
 author = {Luxen, Dennis and Vetter, Christian},
 title = {Real-time routing with OpenStreetMap data},
 booktitle = {Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems},
 series = {GIS '11},
 year = {2011},
 isbn = {978-1-4503-1031-4},
 location = {Chicago, Illinois},
 pages = {513--516},
 numpages = {4},
 url = {http://doi.acm.org/10.1145/2093973.2094062},
 doi = {10.1145/2093973.2094062},
 acmid = {2094062},
 publisher = {ACM},
 address = {New York, NY, USA},
}