parserator-mcp-server
v1.0.1
Published
Intelligent data parsing for AI agents via Model Context Protocol
Maintainers
Readme
🤖 Parserator MCP Server
Intelligent data parsing for AI agents via Model Context Protocol
Transform any unstructured data into structured JSON using Parserator's revolutionary Architect-Extractor pattern - now available as a standardized MCP tool that any AI agent can use.
🚀 What is this?
The Parserator MCP Server exposes Parserator's intelligent parsing capabilities through the Model Context Protocol (MCP), making it available to any AI agent that supports MCP.
Why MCP + Parserator?
- Universal Compatibility: Works with Claude Desktop, LangChain, CrewAI, AutoGPT, and any MCP-compatible agent
- Zero Vendor Lock-in: MCP is an open standard - switch agents freely while keeping your parsing tools
- Production Ready: Built on Parserator's proven Architect-Extractor pattern with 95%+ accuracy
- Token Efficient: 70% fewer tokens than naive LLM prompting approaches
🏗️ The Architect-Extractor Advantage
Unlike simple "prompt an LLM to output JSON" approaches, Parserator uses a sophisticated two-stage process:
- 🏛️ The Architect: Plans the parsing strategy using a small data sample
- ⚡ The Extractor: Executes the plan on full data with surgical precision
Result: Higher accuracy, lower token costs, more reliable outputs.
📦 Installation & Setup
Quick Start
# Install globally
npm install -g parserator-mcp-server
# Run with your API key
parserator-mcp-server pk_live_your_api_key_hereGet Your API Key
- Visit parserator.com
- Sign up for free account
- Generate API key from dashboard
- Start with 1,000 free parses per month
Claude Desktop Integration
Add to your claude_desktop_config.json:
{
"mcpServers": {
"parserator": {
"command": "npx",
"args": ["parserator-mcp-server", "pk_live_your_api_key"],
"description": "Intelligent data parsing for AI agents"
}
}
}Other Agent Frameworks
The MCP server works with any MCP-compatible system:
- LangChain: Use MCP tool integration
- CrewAI: Add as MCP skill
- AutoGPT: Plugin via MCP adapter
- Custom Agents: Standard MCP protocol
🛠️ Available Tools
parse_data - Main Parsing Tool
Transform unstructured data into structured JSON:
// Example: Email processing
{
"inputData": "From: [email protected]\nSubject: Q4 Report Due\nHi team, please finish the quarterly report by Dec 15th.",
"outputSchema": {
"sender": "string",
"subject": "string",
"deadline": "string",
"priority": "string",
"tasks": "string_array"
},
"instructions": "Extract actionable information"
}
// Result:
{
"success": true,
"parsedData": {
"sender": "[email protected]",
"subject": "Q4 Report Due",
"deadline": "December 15th",
"priority": "normal",
"tasks": ["finish quarterly report"]
},
"metadata": {
"confidence": 0.96,
"tokensUsed": 245,
"processingTime": 850
}
}suggest_schema - AI-Powered Schema Generation
Let AI suggest the optimal structure for your data:
{
"sampleData": "John Smith, Senior Engineer, [email protected], (555) 123-4567"
}
// Result:
{
"suggestedSchema": {
"name": "string",
"title": "string",
"email": "string",
"phone": "string"
},
"confidence": 0.91
}validate_schema - Data Validation
Ensure parsed data matches expected structure:
{
"data": {"name": "John", "email": "[email protected]"},
"schema": {"name": "string", "email": "string", "phone": "string"}
}
// Result:
{
"valid": false,
"errors": ["Missing required field: phone"],
"suggestions": ["Add phone field or mark as optional"]
}test_connection - Health Check
Verify API connectivity and account status:
// No parameters needed
// Result:
{
"connection": "healthy",
"latency": "245ms",
"apiEndpoint": "https://app-5108296280.us-central1.run.app"
}📊 Available Resources
parserator://usage - API Usage Stats
{
"requestsThisMonth": 1250,
"tokensUsedThisMonth": 125000,
"quotaRemaining": 875,
"billingPeriod": {
"start": "2024-01-01",
"end": "2024-01-31"
}
}parserator://templates - Pre-built Patterns
[
{
"id": "email-processor",
"name": "Email Processor",
"description": "Extract structured data from emails",
"schema": {
"sender": "string",
"subject": "string",
"tasks": "string_array",
"priority": "string"
}
}
]parserator://examples - Usage Examples
Complete examples for common use cases with expected inputs/outputs.
🎯 Common Use Cases
📧 Email Processing Agents
// Parse emails to extract actionable items
const emailResult = await callTool('parserator', 'parse_data', {
inputData: rawEmailContent,
outputSchema: {
sender: 'string',
recipients: 'string_array',
tasks: 'string_array',
dates: 'string_array',
priority: 'string',
summary: 'string'
}
});📄 Document Analysis Agents
// Extract key information from documents
const docResult = await callTool('parserator', 'parse_data', {
inputData: documentText,
outputSchema: {
title: 'string',
author: 'string',
keyPoints: 'string_array',
entities: 'array',
sentiment: 'string'
}
});🧾 Invoice Processing Agents
// Parse invoices for business automation
const invoiceResult = await callTool('parserator', 'parse_data', {
inputData: invoiceText,
outputSchema: {
vendor: 'string',
amount: 'number',
date: 'string',
items: 'array',
invoiceNumber: 'string'
}
});🕷️ Web Scraping Agents
// Normalize data from different website structures
const webResult = await callTool('parserator', 'parse_data', {
inputData: scrapedContent,
outputSchema: {
title: 'string',
price: 'number',
description: 'string',
features: 'string_array',
availability: 'boolean'
}
});🔧 Advanced Configuration
Environment Variables
# Optional: Custom API endpoint
PARSERATOR_BASE_URL=https://your-custom-endpoint.com
# Optional: Request timeout (default: 30000ms)
PARSERATOR_TIMEOUT=60000
# Optional: Enable debug logging
PARSERATOR_DEBUG=trueProgrammatic Usage
import { ParseratorMCPServer } from 'parserator-mcp-server';
const server = new ParseratorMCPServer('pk_live_your_api_key');
await server.start();🚀 Performance & Reliability
Built for Production
- High Accuracy: 95%+ success rate on structured data extraction
- Fast Response: <3 second average processing time
- Token Efficient: 70% fewer tokens than naive approaches
- Reliable: 99.9% uptime with automatic retries
Error Handling
- Graceful degradation with fallback methods
- Detailed error messages with suggestions
- Automatic retry logic for transient failures
- Comprehensive logging and debugging support
🌟 Why Choose Parserator MCP?
vs. Manual Prompting
❌ Manual: "Extract this data as JSON" (unreliable, high tokens)
✅ Parserator: Architect-Extractor pattern (reliable, efficient)
vs. Rigid Libraries
❌ Libraries: Fixed schemas, brittle parsing
✅ Parserator: Flexible schemas, intelligent adaptation
vs. Vendor Lock-in
❌ Proprietary: Locked to specific platforms
✅ MCP: Universal standard, freedom to move
🤝 Contributing & Community
- GitHub: parserator/mcp-server
- Issues: Report bugs
- Discord: Join the community
- Docs: Full documentation
📄 License
MIT License - see LICENSE file for details.
🏢 Enterprise & Support
- Enterprise Plans: Custom SLAs, on-premise deployment
- Priority Support: Dedicated support channels
- Custom Integration: Help with complex parsing needs
- Training: Team workshops and best practices
Contact: [email protected]
Built with ❤️ by the Parserator team
Making AI agents smarter, one parse at a time
