pms-analysis-reports-mcp-server
v2.0.25
Published
PMS analysis reports server handling maintenance reports, equipment analysis, compliance tracking, and performance metrics with ERP access for data extraction
Downloads
1,015
Readme
PMS Analysis Reports MCP Server
A Model Context Protocol (MCP) server for Planned Maintenance System (PMS) analysis reports, maintenance tracking, compliance monitoring, and performance analytics.
Features
- Search PMS Analysis Reports: Universal search tool for maintenance records, compliance data, and performance metrics
- AI-Powered Analysis: Generate comprehensive maintenance analysis reports with AI insights
- Equipment Status Tracking: Monitor equipment status and maintenance schedules
- Compliance Monitoring: Track compliance requirements and status
- Performance Analytics: Analyze equipment performance and maintenance trends
- Document parsing and processing
- Casefile management
- Typesense integration for search
- MongoDB integration for data storage
Prerequisites
- Node.js (v18 or higher)
- MongoDB
- Typesense
- OpenAI API key
- LlamaParse API key
- Perplexity API key
Configuration
You can configure the server in three ways:
1. Environment-Specific Configuration Files
The server now supports environment-specific configuration files. Create a file named .env.{environment} where {environment} matches your NODE_ENV value:
.env.development # Used when NODE_ENV=development (default)
.env.production # Used when NODE_ENV=production
.env.staging # Used when NODE_ENV=staging
.env # Fallback if no environment-specific file is foundTo use a specific environment:
NODE_ENV=production node dist/index.jsSee the env.production.example file for a template of production environment variables.
2. Environment Variables (.env file)
Create a .env file in the root directory:
MONGO_URI=mongodb://localhost:27017
DB_NAME=mcp_pms
TYPESENSE_HOST=localhost
TYPESENSE_PORT=8108
TYPESENSE_PROTOCOL=http
TYPESENSE_API_KEY=your_typesense_api_key
OPENAI_API_KEY=your_openai_api_key
LLAMA_API_KEY=your_llama_api_key
VENDOR_MODEL=gpt-4
S3_API_TOKEN=your_s3_api_token
S3_GENERATE_HTML_URL=your_s3_generate_html_url
LLAMA_PARSE_URL=your_llama_parse_url
PERPLEXITY_API_KEY=your_perplexity_api_key
GOOGLE_CLIENT_ID=your_google_client_id
GOOGLE_CLIENT_SECRET=your_google_client_secret
GOOGLE_REDIRECT_URI=your_google_redirect_uri
GOOGLE_API_KEY=your_google_api_key
GOOGLE_SEARCH_ENGINE_ID=your_google_search_engine_id
COHERE_API_KEY=your_cohere_api_key
COMPANY_NAME=your_company_name
# API Configuration
SNAPSHOT_URL=https://dev-api.siya.com/v1.0/vessel-info/qna-snapshot
JWT_TOKEN=your_jwt_token_here3. Command Line Arguments
Command line arguments will override values from the .env file:
node dist/index.js \
--mongo-uri mongodb://localhost:27017 \
--db-name mcp_pms \
--typesense-host localhost \
--typesense-port 8108 \
--typesense-protocol http \
--typesense-api-key your_api_key \
--openai-api-key your_openai_key \
--llama-api-key your_llama_key \
--vendor-model gpt-4 \
--s3-api-token your_s3_token \
--perplexity-api-key your_perplexity_key \
--company-name your_company_nameAvailable Command Line Arguments
| Argument | Environment Variable | Default | Description |
|----------|---------------------|---------|-------------|
| --mongo-uri | MONGO_URI | mongodb://localhost:27017 | MongoDB connection URI |
| --db-name | DB_NAME | mcp_pms | MongoDB database name |
| --typesense-host | TYPESENSE_HOST | localhost | Typesense server host |
| --typesense-port | TYPESENSE_PORT | 8108 | Typesense server port |
| --typesense-protocol | TYPESENSE_PROTOCOL | http | Typesense protocol (http/https) |
| --typesense-api-key | TYPESENSE_API_KEY | (empty) | Typesense API key |
| --openai-api-key | OPENAI_API_KEY | (empty) | OpenAI API key |
| --llama-api-key | LLAMA_API_KEY | (empty) | LlamaParse API key |
| --vendor-model | VENDOR_MODEL | gpt-4 | Default LLM model |
| --s3-api-token | S3_API_TOKEN | (empty) | S3 API token |
| --s3-generate-html-url | S3_GENERATE_HTML_URL | (empty) | S3 HTML generation URL |
| --llama-parse-url | LLAMA_PARSE_URL | (empty) | LlamaParse service URL |
| --perplexity-api-key | PERPLEXITY_API_KEY | (empty) | Perplexity API key |
| --google-client-id | GOOGLE_CLIENT_ID | (empty) | Google OAuth client ID |
| --google-client-secret | GOOGLE_CLIENT_SECRET | (empty) | Google OAuth client secret |
| --google-redirect-uri | GOOGLE_REDIRECT_URI | (empty) | Google OAuth redirect URI |
| --google-api-key | GOOGLE_API_KEY | (empty) | Google API key |
| --google-search-engine-id | GOOGLE_SEARCH_ENGINE_ID | (empty) | Google Custom Search Engine ID |
| --cohere-api-key | COHERE_API_KEY | (empty) | Cohere API key |
| --company-name | COMPANY_NAME | (required) | Company name (mandatory) |
| --snapshot-url | SNAPSHOT_URL | https://dev-api.siya.com/v1.0/vessel-info/qna-snapshot | API endpoint for vessel QnA snapshots |
| --jwt-token | JWT_TOKEN | (default dev token) | JWT token for API authentication |
Installation
- Clone the repository:
git clone https://github.com/syia-ai/pms_mcp_server.git
cd pms_mcp_server- Install dependencies:
npm install- Build the project:
npm run build- Start the server:
npm startDevelopment
For development with hot reload:
npm run devTesting
Test the server with MCP Inspector:
npm testMCP Tools and Resources
PMS Analysis Tools
search_pms_analysis_reports: Universal search tool for PMS analysis reports, maintenance records, compliance data, and performance metricsgenerate_maintenance_analysis_report: Generate comprehensive maintenance analysis reports using AI-powered insights
Document Tools
parse_document_link: Parse documents from URLs or local fileswrite_casefile_data: Create and update casefilesretrieve_casefile_data: Search and retrieve casefiles
Search Tools
google_search: Perform Google searchessmart_pms_table_search: Advanced PMS maintenance search with filterssmart_equipment_search: Advanced equipment search with filterssmart_compliance_search: Advanced compliance search with filtersvessel_info_search: Search for vessel informationmongodb_find: Direct MongoDB queries
Maintenance Management Tools
get_all_vessel_maintenance_records: Get vessel maintenance recordsget_equipment_status_data: Retrieve equipment status informationget_complete_vessel_pms_data: Get comprehensive vessel PMS informationget_maintenance_task_details: Get detailed maintenance task informationget_equipment_inspection_details: Get detailed equipment inspection informationlist_maintenance_tasks_by_status: List maintenance tasks filtered by statuslist_equipment_inspections_by_status: List equipment inspections by statuslist_overdue_maintenance_tasks: Find overdue maintenance taskslist_recent_vessel_maintenance_activities: Get recent vessel maintenance activitieslist_top_equipment_by_category: Get top equipment by category
Equipment & Vendor Tools
find_relevant_equipment_vendors: Search for equipment vendors by name, service, or locationget_equipment_vendor_contact_details: Retrieve equipment vendor contact information
Project Structure
src/
├── tools/
│ ├── handlers/
│ │ ├── pmsTools.ts # PMS analysis and maintenance management
│ │ ├── equipmentTools.ts # Equipment status and inspection management
│ │ ├── complianceTools.ts # Compliance tracking and reporting
│ │ ├── exportTools.ts # Data export functionality
│ │ └── universalTools.ts # Universal search and utility tools
│ ├── schema.ts # Tool schema definitions
│ └── index.ts # Main tool handler
├── config/
│ └── index.ts # Configuration management
├── types/
│ └── index.ts # TypeScript type definitions
├── prompts/
│ └── index.ts # Prompt management
├── resources/
│ └── index.ts # Resource management
└── index.ts # Main application entry pointKey Features
PMS Analysis
- Search and analyze maintenance records
- Generate AI-powered maintenance reports
- Monitor equipment status and compliance
- Track performance metrics and trends
Document Processing
- Parse documents from URLs or local files
- Generate markdown and JSON outputs
- Support for various document formats
Casefile Management
- Create and update casefiles
- Track casefile status and importance
- Manage casefile pages and indexes
- Generate casefile URLs
Maintenance Data
- Track maintenance tasks and schedules
- Monitor equipment performance and status
- Manage maintenance budgets and costs
- Link maintenance data to vessels by IMO
Search Integration
- Full-text search using Typesense
- Vector search for semantic matching
- Filtering and pagination support
Error Handling
The application implements comprehensive error handling:
- Input validation
- Database operation error handling
- API integration error handling
- Proper error logging
- User-friendly error messages
Logging
Logging is implemented using Winston that:
- Logs to console with timestamps
- Includes different log levels (debug, info, error)
- Provides detailed error information
- Supports structured logging
Contributing
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add some amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
License
This project is licensed under the MIT License - see the LICENSE file for details.
