npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

pqc-binary-format

v1.0.12

Published

Standardized binary format for post-quantum cryptography encrypted data interchange

Downloads

445

Readme

PQC Binary Format v1.0.12

Crates.io Documentation License Build Status

A standardized, self-describing binary format for post-quantum cryptography encrypted data interchange.

🌟 The Problem

Post-quantum cryptography (PQC) implementations suffer from the "Babel Tower problem": different implementations cannot interoperate because there is no standardized format for encrypted data. Each library uses its own proprietary format, making cross-platform and cross-language encryption impossible.

💡 The Solution

PQC Binary Format provides a universal, algorithm-agnostic format that:

  • ✅ Works across 31+ cryptographic algorithms
  • Self-describing metadata enables seamless decryption
  • Integrity verification with SHA-256 checksums
  • Cross-platform compatible (Rust, Python, JavaScript, Go, etc.)
  • Future-proof design allows algorithm migration
  • Zero dependencies except serde and sha2

🚀 Quick Start

Rust

Add to your Cargo.toml:

[dependencies]
pqc-binary-format = "1.0"

Basic Usage (Rust)

use pqc_binary_format::{PqcBinaryFormat, Algorithm, PqcMetadata, EncParameters};
use std::collections::HashMap;

// Create metadata with encryption parameters
let metadata = PqcMetadata {
    enc_params: EncParameters {
        iv: vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],  // 12-byte nonce
        tag: vec![0; 16],                                  // 16-byte auth tag
        params: HashMap::new(),
    },
    ..Default::default()
};

// Create encrypted data container
let encrypted_data = vec![1, 2, 3, 4, 5];  // Your encrypted bytes
let format = PqcBinaryFormat::new(Algorithm::Hybrid, metadata, encrypted_data);

// Serialize to bytes (for transmission or storage)
let bytes = format.to_bytes().unwrap();

// Deserialize from bytes (includes automatic checksum verification)
let recovered = PqcBinaryFormat::from_bytes(&bytes).unwrap();

assert_eq!(format, recovered);
println!("Algorithm: {}", recovered.algorithm().name());

Python

Install the Python bindings:

cd bindings/python
pip install maturin
maturin develop --release
from pqc_binary_format import Algorithm, EncParameters, PqcMetadata, PqcBinaryFormat

# Create algorithm and metadata
algorithm = Algorithm("hybrid")
enc_params = EncParameters(
    iv=bytes([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]),
    tag=bytes([0] * 16)
)
metadata = PqcMetadata(enc_params=enc_params, kem_params=None, sig_params=None, compression_params=None)

# Create and serialize format
pqc_format = PqcBinaryFormat(algorithm, metadata, bytes([1, 2, 3, 4, 5]))
serialized = pqc_format.to_bytes()

# Deserialize and verify
deserialized = PqcBinaryFormat.from_bytes(serialized)
deserialized.validate()  # Verify checksum integrity
print(f"Algorithm: {deserialized.algorithm.name}")

JavaScript/TypeScript

Build the WebAssembly bindings:

cd bindings/javascript
npm install
npm run build
import init, { WasmAlgorithm, WasmEncParameters, WasmPqcMetadata, WasmPqcBinaryFormat } from './pqc_binary_format.js';

await init();

const algorithm = new WasmAlgorithm('hybrid');
const encParams = new WasmEncParameters(
    new Uint8Array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]),
    new Uint8Array(16)
);
const metadata = new WasmPqcMetadata(encParams);
const pqcFormat = new WasmPqcBinaryFormat(algorithm, metadata, new Uint8Array([1, 2, 3, 4, 5]));

const serialized = pqcFormat.toBytes();
const deserialized = WasmPqcBinaryFormat.fromBytes(serialized);
console.log(`Algorithm: ${deserialized.algorithm.name}`);

Go

Build the Rust library first, then use the Go bindings:

cargo build --release
cd bindings/go
go build example.go
package main

import (
    "fmt"
    "log"
    pqc "github.com/PQCrypta/pqcrypta-community/bindings/go"
)

func main() {
    iv := []byte{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
    tag := make([]byte, 16)
    data := []byte{1, 2, 3, 4, 5}

    format, err := pqc.NewPqcBinaryFormat(pqc.AlgorithmHybrid, iv, tag, data)
    if err != nil {
        log.Fatal(err)
    }
    defer format.Free()

    serialized, _ := format.ToBytes()
    deserialized, _ := pqc.FromBytes(serialized)
    defer deserialized.Free()

    fmt.Printf("Algorithm: %s\n", deserialized.GetAlgorithmName())
}

C/C++

Build the Rust library and generate the C header:

cargo build --release
cbindgen --config cbindgen.toml --output include/pqc_binary_format.h
cd bindings/c-cpp
make
#include "pqc_binary_format.h"
#include <iostream>
#include <vector>

int main() {
    std::vector<uint8_t> iv = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
    std::vector<uint8_t> tag(16, 0);
    std::vector<uint8_t> data = {1, 2, 3, 4, 5};

    PqcFormatHandle* format = pqc_format_new(
        PQC_ALGORITHM_HYBRID,
        iv.data(), iv.size(),
        tag.data(), tag.size(),
        data.data(), data.size()
    );

    ByteBuffer serialized = pqc_format_to_bytes(format);
    PqcFormatHandle* deserialized = pqc_format_from_bytes(serialized.data, serialized.len);

    char* alg_name = pqc_format_get_algorithm_name(deserialized);
    std::cout << "Algorithm: " << alg_name << std::endl;

    pqc_free_string(alg_name);
    pqc_free_buffer(serialized);
    pqc_format_free(deserialized);
    pqc_format_free(format);

    return 0;
}

🌐 Language Bindings

PQC Binary Format provides production-ready, fully tested bindings for multiple programming languages. All bindings support the complete API and produce cross-compatible binary formats.

Available Bindings (v1.0.11)

| Language | Status | Package | Documentation | Examples | |----------|--------|---------|---------------|----------| | Rust | ✅ Native | pqc-binary-format | docs.rs | 3 examples | | Python | ✅ Tested | pqc_binary_format | Python README | 2 examples | | JavaScript/WASM | ✅ Tested | pqc_binary_format (npm) | JS README | 1 example | | Go | ✅ Tested | github.com/PQCrypta/pqcrypta-community/bindings/go | pkg.go.dev | 1 example | | C | ✅ Tested | FFI via Rust | C/C++ README | 1 example | | C++ | ✅ Tested | FFI via Rust | C/C++ README | 1 example |

Installation Quick Reference

# Rust
cargo add pqc-binary-format

# Python (via maturin)
python3 -m venv .venv && source .venv/bin/activate
pip install maturin
maturin develop --release

# JavaScript/WASM (via wasm-pack)
wasm-pack build --target web --features wasm

# Go
go get github.com/PQCrypta/pqcrypta-community/bindings/go

# C/C++ (build from source)
cargo build --release --no-default-features
# Link against target/release/libpqc_binary_format.so

Cross-Language Compatibility

All language bindings are fully interoperable! You can:

  • ✅ Encrypt data in Python, decrypt in Rust
  • ✅ Serialize in Go, deserialize in JavaScript
  • ✅ Create format in C++, validate in Python
  • ✅ Mix any combination across platforms

Example workflow:

# Create encrypted data with Python
python3 examples/python/basic_usage.py > data.bin

# Verify with C++
LD_LIBRARY_PATH=target/release ./examples/cpp/basic_usage < data.bin

# Process with Go
cd examples/go && go run basic_usage.go < ../../data.bin

Binding Features

All bindings support:

  • ✅ Full algorithm suite (31 algorithms)
  • ✅ Metadata serialization/deserialization
  • ✅ SHA-256 integrity verification
  • ✅ Feature flags (compression, streaming, etc.)
  • ✅ Error handling with detailed messages
  • ✅ Memory safety (Rust-backed)

Package Distribution Status

| Platform | Status | Notes | |----------|--------|-------| | crates.io (Rust) | ✅ Published | v1.0.11 live! | | PyPI (Python) | ⏳ Ready | Maturin build tested, ready for maturin publish | | npm (JavaScript) | ⏳ Ready | WASM package built with wasm-pack | | pkg.go.dev (Go) | ⏳ Ready | Will auto-index on tag push |

📦 Binary Format Specification

+-------------------+
| Magic (4 bytes)   | "PQC\x01" - Format identifier
+-------------------+
| Version (1 byte)  | 0x01 - Format version
+-------------------+
| Algorithm (2 bytes)| Algorithm identifier (0x0050 - 0x0506)
+-------------------+
| Flags (1 byte)    | Feature flags (compression, streaming, etc.)
+-------------------+
| Metadata Len (4)  | Length of metadata section
+-------------------+
| Data Len (8)      | Length of encrypted payload
+-------------------+
| Metadata (var)    | Algorithm-specific parameters
+-------------------+
| Data (var)        | Encrypted data
+-------------------+
| Checksum (32)     | SHA-256 integrity checksum
+-------------------+

🔐 Supported Algorithms

The format supports 31 cryptographic algorithm identifiers:

Classical Algorithms

  • Classical (0x0050): X25519 + Ed25519 + AES-256-GCM
  • Password Classical (0x0051): Password-based encryption

Hybrid Algorithms

  • Hybrid (0x0100): ML-KEM-1024 + X25519 + ML-DSA-87 + Ed25519

Post-Quantum Algorithms

  • Post-Quantum (0x0200): ML-KEM-1024 + ML-DSA-87
  • ML-KEM-1024 (0x0202): Pure ML-KEM with AES-256-GCM
  • Multi-KEM (0x0203): Dual-layer KEM
  • Multi-KEM Triple (0x0204): Triple-layer KEM
  • Quad-Layer (0x0205): Four independent layers
  • PQ3-Stack (0x0207): Forward secrecy stack

Max Secure Series (0x0300-0x0306)

High-security configurations for enterprise use

FN-DSA Series (0x0400-0x0407)

Falcon-based signature algorithms

Experimental (0x0500-0x0506)

Research and next-generation algorithms

HQC Code-Based Series (0x0600-0x0602)

NIST 2025 Backup KEM standard - code-based cryptography

View full algorithm list

🎯 Features

Feature Flags

Control optional behavior with feature flags:

use pqc_binary_format::{PqcBinaryFormat, Algorithm, FormatFlags, PqcMetadata, EncParameters};
use std::collections::HashMap;

let flags = FormatFlags::new()
    .with_compression()       // Data was compressed before encryption
    .with_streaming()         // Streaming encryption mode
    .with_additional_auth();  // Additional authentication layer

let metadata = PqcMetadata {
    enc_params: EncParameters {
        iv: vec![1; 12],
        tag: vec![1; 16],
        params: HashMap::new(),
    },
    ..Default::default()
};

let format = PqcBinaryFormat::with_flags(
    Algorithm::QuadLayer,
    flags,
    metadata,
    vec![1, 2, 3],
);

assert!(format.flags().has_compression());
assert!(format.flags().has_streaming());

Metadata Structure

The format includes rich metadata for decryption:

use pqc_binary_format::{PqcMetadata, KemParameters, SigParameters, EncParameters, CompressionParameters};
use std::collections::HashMap;

let metadata = PqcMetadata {
    // Key Encapsulation (optional)
    kem_params: Some(KemParameters {
        public_key: vec![/* ML-KEM public key */],
        ciphertext: vec![/* encapsulated key */],
        params: HashMap::new(),
    }),

    // Digital Signature (optional)
    sig_params: Some(SigParameters {
        public_key: vec![/* ML-DSA public key */],
        signature: vec![/* signature bytes */],
        params: HashMap::new(),
    }),

    // Symmetric Encryption (required)
    enc_params: EncParameters {
        iv: vec![1; 12],              // Nonce/IV
        tag: vec![1; 16],             // AEAD auth tag
        params: HashMap::new(),
    },

    // Compression (optional)
    compression_params: Some(CompressionParameters {
        algorithm: "zstd".to_string(),
        level: 3,
        original_size: 1024,
        params: HashMap::new(),
    }),

    // Custom parameters (extensible)
    custom: HashMap::new(),
};

Custom Parameters

Add your own metadata:

use pqc_binary_format::PqcMetadata;

let mut metadata = PqcMetadata::new();
metadata.add_custom("my_param".to_string(), vec![1, 2, 3]);

// Later...
if let Some(value) = metadata.get_custom("my_param") {
    println!("Custom param: {:?}", value);
}

🔍 Integrity Verification

Every format includes a SHA-256 checksum calculated over all fields:

use pqc_binary_format::PqcBinaryFormat;

let bytes = format.to_bytes().unwrap();

// Tamper with the data
// let mut corrupted = bytes.clone();
// corrupted[50] ^= 0xFF;

// Deserialization automatically verifies checksum
match PqcBinaryFormat::from_bytes(&bytes) {
    Ok(format) => println!("✓ Checksum valid"),
    Err(e) => println!("✗ Checksum failed: {}", e),
}

📚 Examples

Example 1: Basic Encryption Format

use pqc_binary_format::{PqcBinaryFormat, Algorithm, PqcMetadata, EncParameters};
use std::collections::HashMap;

fn main() {
    let metadata = PqcMetadata {
        enc_params: EncParameters {
            iv: vec![1; 12],
            tag: vec![1; 16],
            params: HashMap::new(),
        },
        ..Default::default()
    };

    let format = PqcBinaryFormat::new(
        Algorithm::Hybrid,
        metadata,
        vec![/* your encrypted data */],
    );

    // Save to file
    let bytes = format.to_bytes().unwrap();
    std::fs::write("encrypted.pqc", &bytes).unwrap();

    // Load from file
    let loaded_bytes = std::fs::read("encrypted.pqc").unwrap();
    let loaded = PqcBinaryFormat::from_bytes(&loaded_bytes).unwrap();

    println!("Algorithm: {}", loaded.algorithm().name());
}

Example 2: Cross-Language Interoperability

Rust (Encryption)

let format = PqcBinaryFormat::new(Algorithm::PostQuantum, metadata, data);
let bytes = format.to_bytes().unwrap();
// Send bytes to Python/JavaScript/Go/C++

Python (Decryption)

from pqc_binary_format import PqcBinaryFormat

format = PqcBinaryFormat.from_bytes(bytes)
print(f"Algorithm: {format.algorithm().name()}")
print(f"Data: {len(format.data())} bytes")

JavaScript (Decryption)

const format = WasmPqcBinaryFormat.fromBytes(bytes);
console.log(`Algorithm: ${format.algorithm.name}`);
console.log(`Data: ${format.data.length} bytes`);

Go (Decryption)

format, _ := pqc.FromBytes(bytes)
defer format.Free()
fmt.Printf("Algorithm: %s\n", format.GetAlgorithmName())
fmt.Printf("Data: %d bytes\n", len(format.GetData()))

Example 3: Algorithm Migration

// Old data encrypted with Classical algorithm
let old_format = PqcBinaryFormat::from_bytes(&old_encrypted_data)?;
assert_eq!(old_format.algorithm(), Algorithm::Classical);

// Re-encrypt with Post-Quantum algorithm
let plaintext = decrypt_with_classical(&old_format)?;
let new_metadata = create_pq_metadata()?;
let new_format = PqcBinaryFormat::new(
    Algorithm::PostQuantum,
    new_metadata,
    encrypt_with_pq(&plaintext)?,
);

// Same format, different algorithm!

🎓 Use Cases

1. Cross-Platform Encryption

Encrypt in Rust, decrypt in Python, JavaScript, or Go using the same format.

2. Long-Term Archival

Self-describing format ensures data can be decrypted decades later even as algorithms evolve.

3. Algorithm Agility

Switch between algorithms without changing application code.

4. Compliance & Audit

Embedded metadata provides audit trail for regulatory compliance (GDPR, HIPAA, etc.).

5. Research & Benchmarking

Standardized format enables fair comparison of PQC algorithm performance.

🧪 Testing

# Run tests
cargo test

# Run tests with output
cargo test -- --nocapture

# Run specific test
cargo test test_binary_format_roundtrip

📊 Benchmarks

# Run benchmarks
cargo bench

# View benchmark results
open target/criterion/report/index.html

Performance characteristics:

  • Serialization: ~50 MB/s for typical payloads
  • Deserialization: ~45 MB/s (includes checksum verification)
  • Overhead: ~100 bytes + metadata size

🔧 Development

Building from Source

git clone https://github.com/PQCrypta/pqcrypta-community.git
cd pqcrypta-community
cargo build --release

Running Examples

cargo run --example basic_usage
cargo run --example with_compression
cargo run --example cross_platform

🤝 Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

Current Status

  • Language Bindings: ✅ Rust (native), ✅ Python (tested v1.0.11), ✅ JavaScript/WASM (tested v1.0.11), ✅ Go (tested v1.0.11), ✅ C/C++ (tested v1.0.11)
  • Examples: ✅ 9 validated examples across 6 languages
  • Package Distribution: ✅ crates.io published! | ⏳ PyPI, npm, pkg.go.dev ready

Areas for Contribution

  • Additional Language Bindings: Java, C#, Ruby, Swift, Kotlin - help us expand!
  • Documentation: Tutorials, integration guides, video walkthroughs
  • Testing: Additional test cases, fuzzing, property-based testing
  • Performance: SIMD optimizations, benchmark improvements
  • Standards: Help draft RFC for IETF standardization submission
  • Package Publishing: Help publish to PyPI, npm, and other package registries

📄 License

Licensed under either of:

  • MIT License (LICENSE-MIT or http://opensource.org/licenses/MIT)
  • Apache License, Version 2.0 (LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)

at your option.

🙏 Acknowledgments

This format was developed as part of the PQCrypta enterprise post-quantum cryptography platform. Special thanks to:

  • NIST Post-Quantum Cryptography Project
  • The Rust cryptography community
  • Contributors to pqcrypto, ring, and other foundational crates

📖 References

🔗 Related Projects

💬 Community & Support


Made with ❤️ by the PQCrypta Community

Securing the future, one byte at a time.