privacy-utils-dp
v0.2.1
Published
Differential Privacy mechanisms and utilities
Maintainers
Readme
Privacy Utils Differential Privacy
Differential Privacy mechanisms and utilities for privacy-preserving data analysis.
Features
- Laplace Mechanism: Add noise to numerical data
- Gaussian Mechanism: Advanced noise addition with better utility
- Exponential Mechanism: For discrete choice problems
- Privacy Budget Tracking: Monitor and manage privacy expenditure
- Composition Theorems: Combine multiple DP operations
- Sensitivity Analysis: Automatic sensitivity calculation
Installation
npm install privacy-utils-dpUsage
import { LaplaceMechanism, PrivacyBudget, composeBudgets } from 'privacy-utils-dp';
// Create a privacy budget
const budget = new PrivacyBudget({ epsilon: 1.0, delta: 1e-5 });
// Add Laplace noise
const mechanism = new LaplaceMechanism({ sensitivity: 1.0 });
const noisyValue = mechanism.addNoise(42, budget);
// Compose multiple privacy budgets
const budget1 = new PrivacyBudget({ epsilon: 0.5, delta: 1e-6 });
const budget2 = new PrivacyBudget({ epsilon: 0.5, delta: 1e-6 });
const composedBudget = composeBudgets([budget1, budget2]);
// Check budget status
console.log(`Remaining epsilon: ${budget.remainingEpsilon}`);
console.log(`Budget exhausted: ${budget.isExhausted}`);API Reference
For complete API documentation, see the TypeScript definitions or visit the main repository.
License
MIT
Contributing
Contributions are welcome! Please see the main repository for contribution guidelines.
