npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

prozorro_ai

v1.1.1

Published

This subsystem is designed to provide predictions based on machine learning modules.

Readme

Description

This subsystem is designed to provide suggestions based on machine learning models.

Notice! It is recommended to use this library starting from version 1.1.0 that introduces authentication via an API key.

Installation

Node

Install with npm:

npm install prozorro_ai

Browser

Include the latest script directly from npm.

<script src="https://cdn.jsdelivr.net/npm/[email protected]/prozorro_ai.min.js"></script>

OR

  1. Download the latest distribution in releases.
  2. Make sure to serve it from your webserver.
  3. Include it on the client from a SCRIPT tag.

Usage

Import

Import script to use Prozorro_AI.

For webpack:

import Prozorro_AI from "prozorro_ai"

For requirejs:

const Prozorro_AI = require('prozorro_ai')

For cdn:

<script src="https://cdn.jsdelivr.net/npm/[email protected]/prozorro_ai.min.js"></script>

Authentication

This library requires authentication via an API key. The API key is issued after the registration confirmation on the https://ocdsanalytics.com/ website. You can find it in the API section on the Account page.

Use API key as follows:

Prozorro_AI.client({apiKey: 'Insert your API_KEY here'}).units.suggest({
...
})

Unit prediction

Based on the inputs, you can get the most probable unit of measurement.

Try it

|№|property|description|type|required|default| |:-|:-|:-|:-|:-|:-| |1|tenderTitle|A name of the tender|string|required at least one of № 1-4|' '| |2|tenderDescription|A description of the tender|string|required at least one of № 1-4|' '| |3|itemDescription|A description of the goods, services to be provided|string|required at least one of № 1-4|' '| |4|itemClassification|The primary classification for the item. It is mandatory for classification.scheme to be CPV.|string|required at least one of № 1-4|' '| |5|accuracyCutoff|Probability threshold|string/number|not required |0.1| |6|limit|Number of the results to be displayed|string/number|not required |5|

The example would be as follows:

Find unit of measurement based on tender's title and description, item's description and classification.

Request:

import Prozorro_AI from "prozorro_ai";
// const Prozorro_AI = require('prozorro_ai');
Prozorro_AI.client({apiKey: 'Insert your API_KEY here'}).units.suggest({
  tenderTitle: 'Тканини бавовняні',
  tenderDescription: 'Відбілений сатин',
  itemDescription: 'Сатин відбілений. Склад - 100% бавовна, ширина 200 см',
  itemClassification: '19212000-5'
}, {accuracyCutoff: '0.02', limit: '5'})
.then(response => {
  console.log(response);
}, error => {
  console.log(error);
})

Response:

[
	{
	  id: 'MTR',
      name: 'метри',
      symbol: 'м',
      accuracy: 0.5046774744987488
	},
	{
	  id: 'LM',
      name: 'Погонний метр',
      symbol: 'пог.м.',
      accuracy: 0.40248599648475647
	},
	{
	  id: 'H87',
      name: 'штуки',
      symbol: 'шт.',
      accuracy: 0.05680004507303238
	}
]

Classification prediction

Based on the inputs, you can get the most probable classification.

Try it

|№|property|description|type|required|default| |:-|:-|:-|:-|:-|:-| |1|tenderTitle|A name of the tender|string|required at least one of № 1-4|' '| |2|tenderDescription|A description of the tender|string|required at least one of № 1-4|' '| |3|itemDescription|A description of the goods, services to be provided|string|required at least one of № 1-4|' '| |4|itemUnit|Name of the unit based on the UN/CEFACT Recommendation 20 unit code.|string|required at least one of № 1-4|' '| |5|accuracyCutoff|Probability threshold|string/number|not required |0.1| |6|limit|Number of the results to be displayed|string/number|not required |5|

Find classification based on tender's title and description, item's description and unit of measure.

Request:

import Prozorro_AI from "prozorro_ai";
// const Prozorro_AI = require('prozorro_ai');
Prozorro_AI.client({apiKey: 'Insert your API_KEY here'}).classifications.suggest({
  tenderTitle: 'Технічне обслуговування і ремонт офісної техніки',
  tenderDescription: 'Послуги з технічного обслуговування принтерів та картриджів',
  itemDescription: 'Послуги з технічного обслуговування принтерів',
  itemUnit: 'E48'
}, {accuracyCutoff: '0.02', limit: '5'})
.then(response => {
  console.log(response);
}, error => {
  console.log(error);
})

Response:

[
	{
	  id: '50310000-1',
      description: 'Технічне обслуговування і ремонт офісної техніки',
      scheme: 'ДК021',
      accuracy: 0.23198238015174866
	},
	{
	  id: '50323000-5',
      description: 'Ремонт і технічне обслуговування комп’ютерних периферійних пристроїв',
      scheme: 'ДК021',
      accuracy: 0.07701390236616135
	},
	{
	  id: '50320000-4',
      description: 'Послуги з ремонту і технічного обслуговування персональних комп’ютерів',
      scheme: 'ДК021',
      accuracy: 0.07315685600042343
	}
]

Examples

Various examples can be viewed here