npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

pylate-rs

v1.0.4

Published

Rust and WebAssembly library for late interaction models.

Readme

 

⭐️ Overview

pylate-rs is a high-performance inference engine for PyLate models, meticulously crafted in Rust for optimal speed and efficiency.

While model training is handled by PyLate, which supports a variety of late interaction models, pylate-rs is engineered to execute these models at speeds.

  • Accelerated Performance: Experience significantly faster model loading and rapid cold starts, making it ideal for serverless environments and low-latency applications.

  • Lightweight Design: Built on the Candle ML framework, pylate-rs maintains a minimal footprint suitable for resource-constrained systems like serverless functions and edge computing.

  • Broad Hardware Support: Optimized for diverse hardware, with dedicated builds for standard CPUs, Intel (MKL), Apple Silicon (Accelerate & Metal), and NVIDIA GPUs (CUDA).

  • Cross-Platform Integration: Seamlessly integrate pylate-rs into your projects with bindings for Python, Rust, and JavaScript/WebAssembly.

For a complete, high-performance multi-vector search pipeline, pair pylate-rs with its companion library, FastPlaid, at inference time.

Explore our WebAssembly live demo.

 

💻 Installation

Install the version of pylate-rs that matches your hardware for optimal performance.

Python

| Target Hardware | Installation Command | | :----------------------- | :--------------------------------- | | Standard CPU | pip install pylate-rs | | Apple CPU (macOS) | pip install pylate-rs-accelerate | | Intel CPU (MKL) | pip install pylate-rs-mkl | | Apple GPU (M1/M2/M3) | pip install pylate-rs-metal |

Python GPU support

To install pylate-rs with GPU support, please built it from source using the following command:

pip install git+https://github.com/lightonai/pylate-rs.git

or by cloning the repository and installing it locally:

git clone https://github.com/lightonai/pylate-rs.git
cd pylate-rs
pip install .

Any help in pre-building and distributing CUDA wheels would be greatly appreciated.

 

Rust

Add pylate-rs to your Cargo.toml by enabling the feature flag that corresponds to your backend.

| Feature | Target Hardware | Installation Command | | :----------- | :----------------------- | :------------------------------------------ | | (default) | Standard CPU | cargo add pylate-rs | | accelerate | Apple CPU (macOS) | cargo add pylate-rs --features accelerate | | mkl | Intel CPU (MKL) | cargo add pylate-rs --features mkl | | metal | Apple GPU (M1/M2/M3) | cargo add pylate-rs --features metal | | cuda | NVIDIA GPU (CUDA) | cargo add pylate-rs --features cuda |

 

⚡️ Quick Start

Python

Get started in just a few lines of Python.

from pylate_rs import models

# Initialize the model for your target device ("cpu", "cuda", or "mps")
model = models.ColBERT(
    model_name_or_path="lightonai/GTE-ModernColBERT-v1",
    device="cpu"
)

# Encode queries and documents
queries_embeddings = model.encode(
    sentences=["What is the capital of France?", "How big is the sun?"],
    is_query=True
)

documents_embeddings = model.encode(
    sentences=["Paris is the capital of France.", "The sun is a star."],
    is_query=False
)

# Calculate similarity scores
similarities = model.similarity(queries_embeddings, documents_embeddings)

print(f"Similarity scores:\n{similarities}")

# Use hierarchical pooling to reduce document embedding size and speed up downstream tasks
pooled_documents_embeddings = model.encode(
    sentences=["Paris is the capital of France.", "The sun is a star."],
    is_query=False,
    pool_factor=2, # Halves the number of token embeddings
)

similarities_pooled = model.similarity(queries_embeddings, pooled_documents_embeddings)

print(f"Similarity scores with pooling:\n{similarities_pooled}")

 

Rust

use anyhow::Result;
use candle_core::Device;
use pylate_rs::{hierarchical_pooling, ColBERT};

fn main() -> Result<()> {
    // Set the device (e.g., Cpu, Cuda, Metal)
    let device = Device::Cpu;

    // Initialize the model
    let mut model: ColBERT = ColBERT::from("lightonai/GTE-ModernColBERT-v1")
        .with_device(device)
        .try_into()?;

    // Encode queries and documents
    let queries = vec!["What is the capital of France?".to_string()];
    let documents = vec!["Paris is the capital of France.".to_string()];

    let query_embeddings = model.encode(&queries, true)?;
    let document_embeddings = model.encode(&documents, false)?;

    // Calculate similarity
    let similarities = model.similarity(&query_embeddings, &document_embeddings)?;
    println!("Similarity score: {}", similarities.data[0][0]);

    // Use hierarchical pooling
    let pooled_document_embeddings = hierarchical_pooling(&document_embeddings, 2)?;
    let pooled_similarities = model.similarity(&query_embeddings, &pooled_document_embeddings)?;
    println!("Similarity score after hierarchical pooling: {}", pooled_similarities.data[0][0]);

    Ok(())
}

 

📊 Benchmarks

Device    backend        Queries per seconds        Documents per seconds        Model loading time
cpu       PyLate         350.10                     32.16                        2.06
cpu       pylate-rs      386.21 (+10%)              42.15 (+31%)                 0.07 (-97%)

cuda      PyLate         2236.48                    882.66                       3.62
cuda      pylate-rs      4046.88 (+81%)             976.23 (+11%)                1.95 (-46%)

mps       PyLate         580.81                     103.10                       1.95
mps       pylate-rs      291.71 (-50%)              23.26 (-77%)                 0.08 (-96%)

Benchmarks were run with Python. pylate-rs provide significant performance improvement, especially in scenarios requiring fast startup times. While on a Mac it takes up to 5 seconds to load a model with the Transformers backend and encode a single query, pylate-rs achieves this in just 0.11 seconds, making it ideal for low-latency applications. Don't expect pylate-rs to be much faster than PyLate to encode a lot of content at the same time as PyTorch is heavily optimized.

 

📦 Using Custom Models

pylate-rs is compatible with any model saved in the PyLate format, whether from the Hugging Face Hub or a local directory. PyLate itself is compatible with a wide range of models, including those from Sentence Transformers, Hugging Face Transformers, and custom models. So before using pylate-rs, ensure your model is saved in the PyLate format. You can easily convert and upload your own models using PyLate.

Pushing a model to the Hugging Face Hub in PyLate format is straightforward. Here’s how you can do it:

pip install pylate

Then, you can use the following Python code snippet to push your model:

from pylate import models

# Load your model
model = models.ColBERT(model_name_or_path="your-base-model-on-hf")

# Push in PyLate format
model.push_to_hub(
    repo_id="YourUsername/YourModelName",
    private=False,
    token="YOUR_HUGGINGFACE_TOKEN",
)

If you want to save a model in PyLate format locally, you can do so with the following code snippet:

from pylate import models

# Load your model
model = models.ColBERT(model_name_or_path="your-base-model-on-hf")

# Save in PyLate format
model.save_pretrained("path/to/save/GTE-ModernColBERT-v1-pylate")

An existing set of models compatible with pylate-rs is available on the Hugging Face Hub under the LightOn namespace.

 

Retrieval pipeline

pip install pylate-rs fast-plaid

Here is a sample code for running ColBERT with pylate-rs and fast-plaid.

import torch
from fast_plaid import search
from pylate_rs import models

model = models.ColBERT(
    model_name_or_path="lightonai/GTE-ModernColBERT-v1",
    device="cpu", # mps or cuda
)

documents = [
    "1st Arrondissement: Louvre, Tuileries Garden, Palais Royal, historic, tourist.",
    "2nd Arrondissement: Bourse, financial, covered passages, Sentier, business.",
    "3rd Arrondissement: Marais, Musée Picasso, galleries, trendy, historic.",
    "4th Arrondissement: Notre-Dame, Marais, Hôtel de Ville, LGBTQ+.",
    "5th Arrondissement: Latin Quarter, Sorbonne, Panthéon, student, intellectual.",
    "6th Arrondissement: Saint-Germain-des-Prés, Luxembourg Gardens, chic, artistic, cafés.",
    "7th Arrondissement: Eiffel Tower, Musée d'Orsay, Les Invalides, affluent, prestigious.",
    "8th Arrondissement: Champs-Élysées, Arc de Triomphe, luxury, shopping, Élysée.",
    "9th Arrondissement: Palais Garnier, department stores, shopping, theaters.",
    "10th Arrondissement: Gare du Nord, Gare de l'Est, Canal Saint-Martin.",
    "11th Arrondissement: Bastille, nightlife, Oberkampf, revolutionary, hip.",
    "12th Arrondissement: Bois de Vincennes, Opéra Bastille, Bercy, residential.",
    "13th Arrondissement: Chinatown, Bibliothèque Nationale, modern, diverse, street-art.",
    "14th Arrondissement: Montparnasse, Catacombs, residential, artistic, quiet.",
    "15th Arrondissement: Residential, family, populous, Parc André Citroën.",
    "16th Arrondissement: Trocadéro, Bois de Boulogne, affluent, elegant, embassies.",
    "17th Arrondissement: Diverse, Palais des Congrès, residential, Batignolles.",
    "18th Arrondissement: Montmartre, Sacré-Cœur, Moulin Rouge, artistic, historic.",
    "19th Arrondissement: Parc de la Villette, Cité des Sciences, canals, diverse.",
    "20th Arrondissement: Père Lachaise, Belleville, cosmopolitan, artistic, historic.",
]

# Encoding documents
documents_embeddings = model.encode(
    sentences=documents,
    is_query=False,
    pool_factor=2, # Let's divide the number of embeddings by 2.
)

# Creating the FastPlaid index
fast_plaid = search.FastPlaid(index="index")


fast_plaid.create(
    documents_embeddings=[torch.tensor(embedding) for embedding in documents_embeddings]
)

We can then load the existing index and search for the most relevant documents:

import torch
from fast_plaid import search
from pylate_rs import models

fast_plaid = search.FastPlaid(index="index")

queries = [
    "arrondissement with the Eiffel Tower and Musée d'Orsay",
    "Latin Quarter and Sorbonne University",
    "arrondissement with Sacré-Cœur and Moulin Rouge",
    "arrondissement with the Louvre and Tuileries Garden",
    "arrondissement with Notre-Dame Cathedral and the Marais",
]

queries_embeddings = model.encode(
    sentences=queries,
    is_query=True,
)

scores = fast_plaid.search(
    queries_embeddings=torch.tensor(queries_embeddings),
    top_k=3,
)

print(scores)

📝 Citation

If you use pylate-rs in your research or project, please cite it as follows:

@misc{PyLate,
  title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
  author={Chaffin, Antoine and Sourty, Raphaël},
  url={https://github.com/lightonai/pylate},
  year={2024}
}

 

WebAssembly

For JavaScript and TypeScript projects, install the WASM package from npm.

npm install pylate-rs

Load the model by fetching the required files from a local path or the Hugging Face Hub.

import { ColBERT } from "pylate-rs";

const REQUIRED_FILES = [
  "tokenizer.json",
  "model.safetensors",
  "config.json",
  "config_sentence_transformers.json",
  "1_Dense/model.safetensors",
  "1_Dense/config.json",
  "special_tokens_map.json",
];

async function loadModel(modelRepo) {
  const fetchAllFiles = async (basePath) => {
    const responses = await Promise.all(
      REQUIRED_FILES.map((file) => fetch(`${basePath}/${file}`))
    );
    for (const response of responses) {
      if (!response.ok) throw new Error(`File not found: ${response.url}`);
    }
    return Promise.all(
      responses.map((res) => res.arrayBuffer().then((b) => new Uint8Array(b)))
    );
  };

  try {
    let modelFiles;
    try {
      // Attempt to load from a local `models` directory first
      modelFiles = await fetchAllFiles(`models/${modelRepo}`);
    } catch (e) {
      console.warn(
        `Local model not found, falling back to Hugging Face Hub.`,
        e
      );
      // Fallback to fetching directly from the Hugging Face Hub
      modelFiles = await fetchAllFiles(
        `https://huggingface.co/${modelRepo}/resolve/main`
      );
    }

    const [
      tokenizer,
      model,
      config,
      stConfig,
      dense,
      denseConfig,
      tokensConfig,
    ] = modelFiles;

    // Instantiate the model with the loaded files
    const colbertModel = new ColBERT(
      model,
      dense,
      tokenizer,
      config,
      stConfig,
      denseConfig,
      tokensConfig,
      32
    );

    // You can now use `colbertModel` for encoding
    console.log("Model loaded successfully!");
    return colbertModel;
  } catch (error) {
    console.error("Model Loading Error:", error);
  }
}