rajpendkalkar123-ml-middleware
v1.0.0
Published
ML-powered request analysis middleware for Express and Next.js applications
Maintainers
Readme
ML Middleware
ML-powered request analysis middleware for Express and Next.js applications.
Installation
npm install rajpendkalkar123-ml-middlewareQuick Start
Express
import express from 'express';
import MLMiddleware from 'rajpendkalkar123-ml-middleware';
const app = express();
app.use(express.json());
const mlMiddleware = new MLMiddleware({
mlApiUrl: 'https://your-ml-api.com/analyze',
confidenceThreshold: 0.7,
onSuspiciousRequest: async (req, res, classification) => {
console.log('Blocked:', classification);
res.status(403).json({ error: 'Request blocked' });
}
});
app.use(mlMiddleware.middleware());
app.listen(3000);Next.js
// middleware.js
import { MLMiddleware } from 'rajpendkalkar123-ml-middleware';
const mlMiddleware = new MLMiddleware({
confidenceThreshold: 0.8
});
export async function middleware(request) {
// Implement Next.js middleware logic
}Configuration
mlApiUrl: URL of your ML classification APIconfidenceThreshold: Minimum confidence to take action (0-1)analyzeBody: Analyze request body (default: true)analyzeQuery: Analyze query parameters (default: true)analyzeHeaders: Analyze headers (default: false)onSuspiciousRequest: Custom handler for suspicious requests
Features
- 🧠 ML-powered request analysis
- ⚡ Built-in caching for performance
- 🔄 Automatic retries on API failures
- 🛡️ Fail-open by default (traffic allowed if ML is unavailable)
- 📊 Confidence scoring
- 🎯 Customizable thresholds and handlers
License
MIT
