npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

ralph-loop-agent

v0.0.3

Published

> **Note**: This package is experimental. APIs may change between versions.

Readme

ralph-loop-agent

Note: This package is experimental. APIs may change between versions.

A framework for building autonomous AI agents that iterate until a task is complete. Implements the "Ralph Wiggum" technique - an iterative approach with verification at each step.

Installation

npm install ralph-loop-agent zod
# or
pnpm add ralph-loop-agent zod

Note: zod is a peer dependency required for tool schemas.

Quick Start

import { RalphLoopAgent, iterationCountIs } from 'ralph-loop-agent';
import { tool } from 'ai';
import { z } from 'zod';

// Define your tools
const tools = {
  readFile: tool({
    description: 'Read a file',
    parameters: z.object({ path: z.string() }),
    execute: async ({ path }) => {
      // Your implementation
      return { content: '...' };
    },
  }),
  writeFile: tool({
    description: 'Write a file',
    parameters: z.object({ path: z.string(), content: z.string() }),
    execute: async ({ path, content }) => {
      // Your implementation
      return { success: true };
    },
  }),
  markComplete: tool({
    description: 'Mark the task as complete',
    parameters: z.object({ summary: z.string() }),
    execute: async ({ summary }) => {
      return { complete: true, summary };
    },
  }),
};

// Create the agent
const agent = new RalphLoopAgent({
  model: 'anthropic/claude-opus-4.5',
  instructions: 'You are a coding assistant. Complete tasks and use markComplete when done.',
  tools,
  stopWhen: iterationCountIs(20),
  verifyCompletion: async ({ result }) => {
    // Check if markComplete was called
    for (const step of result.steps) {
      for (const toolResult of step.toolResults) {
        if (toolResult.toolName === 'markComplete') {
          return { complete: true, reason: 'Task marked complete' };
        }
      }
    }
    return { complete: false, reason: 'Continue working' };
  },
});

// Run the agent
const result = await agent.loop({
  prompt: 'Create a hello world function in hello.ts',
});

console.log(`Completed in ${result.iterations} iterations`);
console.log(`Reason: ${result.completionReason}`);

Architecture

┌─────────────────────────────────────────────────────────┐
│                    Ralph Loop Agent                      │
├─────────────────────────────────────────────────────────┤
│  ┌─────────────────────────────────────────────────┐    │
│  │              Outer Loop (Ralph)                  │    │
│  │  - Runs iterations until verified complete       │    │
│  │  - Calls verifyCompletion after each iteration   │    │
│  │  - Manages context/summarization                 │    │
│  │                                                  │    │
│  │  ┌─────────────────────────────────────────┐    │    │
│  │  │        Inner Loop (Tool Loop)           │    │    │
│  │  │  - Executes LLM calls                   │    │    │
│  │  │  - Runs tools                           │    │    │
│  │  │  - Continues until step limit           │    │    │
│  │  └─────────────────────────────────────────┘    │    │
│  └─────────────────────────────────────────────────┘    │
└─────────────────────────────────────────────────────────┘

API Reference

RalphLoopAgent

The main agent class.

const agent = new RalphLoopAgent<TOOLS>({
  // Required
  model: 'anthropic/claude-opus-4.5',  // AI Gateway format
  instructions: string,                 // System prompt
  tools: TOOLS,                         // Tool definitions

  // Optional
  id?: string,                          // Agent identifier
  stopWhen?: RalphStopCondition,        // When to stop iterating
  verifyCompletion?: VerifyCompletionFunction,  // Completion check
  onIterationStart?: (ctx) => void,     // Called before each iteration
  onIterationEnd?: (ctx) => void,       // Called after each iteration
  onContextSummarized?: (ctx) => void,  // Called when context is compressed

  // Context management (for long tasks)
  contextManagement?: {
    maxContextTokens?: number,          // Default: 150,000
    enableSummarization?: boolean,      // Default: true
    recentIterationsToKeep?: number,    // Default: 2
    maxFileChars?: number,              // Default: 30,000
    changeLogBudget?: number,           // Default: 5,000
    fileContextBudget?: number,         // Default: 50,000
  },
});

agent.loop(params)

Run the agent loop.

const result = await agent.loop({
  prompt: 'Your task description',
  abortSignal?: AbortSignal,  // For cancellation
});

// Result shape
{
  text: string,                    // Final text output
  iterations: number,              // How many iterations ran
  completionReason: 'verified' | 'max-iterations' | 'aborted',
  reason?: string,                 // From verifyCompletion
  result: GenerateTextResult,      // Last iteration result
  allResults: GenerateTextResult[], // All iteration results
  totalUsage: LanguageModelUsage,  // Aggregated token usage
}

agent.stream(params)

Stream the agent loop (returns an async iterable).

const stream = agent.stream({
  prompt: 'Your task description',
});

for await (const chunk of stream) {
  // Handle streaming chunks
}

// Get final result
const result = await stream.result;

Stop Conditions

Control when the agent stops iterating:

import { 
  iterationCountIs, 
  tokenCountIs, 
  inputTokenCountIs,
  outputTokenCountIs,
  costIs 
} from 'ralph-loop-agent';

// Stop after N iterations
stopWhen: iterationCountIs(20)

// Stop after N total tokens
stopWhen: tokenCountIs(100_000)

// Stop after N input tokens
stopWhen: inputTokenCountIs(80_000)

// Stop after N output tokens
stopWhen: outputTokenCountIs(20_000)

// Stop after $X spent (auto-detects model pricing)
stopWhen: costIs(5.00)

// Stop after $X with explicit model
stopWhen: costIs(5.00, 'anthropic/claude-opus-4.5')

// Stop after $X with custom rates
stopWhen: costIs(5.00, {
  inputCostPerMillionTokens: 5.0,
  outputCostPerMillionTokens: 25.0,
})

// Combine multiple conditions (any triggers stop)
stopWhen: [iterationCountIs(50), costIs(10.00)]

Verification Function

Define when a task is complete:

verifyCompletion: async ({ result, iteration, allResults, originalPrompt }) => {
  // Check tool results
  for (const step of result.steps) {
    for (const toolResult of step.toolResults) {
      if (toolResult.toolName === 'markComplete') {
        return { complete: true, reason: 'Task complete!' };
      }
    }
  }

  // Check output text
  if (result.text.includes('ERROR')) {
    return { complete: false, reason: 'Error detected, please fix' };
  }

  // Continue iterating
  return { complete: false, reason: 'Keep working on the task' };
}

Context Management

For long-running tasks, enable auto-summarization:

const agent = new RalphLoopAgent({
  // ...
  contextManagement: {
    maxContextTokens: 180_000,      // Leave room for output
    enableSummarization: true,      // Compress old iterations
    recentIterationsToKeep: 2,      // Keep last 2 in full detail
    changeLogBudget: 8_000,         // Tokens for change log
    fileContextBudget: 60_000,      // Tokens for file cache
  },
  onContextSummarized: ({ iteration, summarizedIterations, tokensSaved }) => {
    console.log(`Compressed ${summarizedIterations} iterations, saved ${tokensSaved} tokens`);
  },
});

Lifecycle Callbacks

Monitor agent progress:

const agent = new RalphLoopAgent({
  // ...
  onIterationStart: ({ iteration }) => {
    console.log(`Starting iteration ${iteration}`);
  },
  onIterationEnd: ({ iteration, duration, result }) => {
    console.log(`Iteration ${iteration} took ${duration}ms`);
    console.log(`Tokens: ${result.usage.totalTokens}`);
  },
});

Utility Functions

Token/Cost Calculation

import { 
  getModelPricing, 
  calculateCost, 
  addLanguageModelUsage,
  estimateTokens,
} from 'ralph-loop-agent';

// Get pricing for a model
const pricing = getModelPricing('anthropic/claude-opus-4.5');
// { inputCostPerMillionTokens: 5.0, outputCostPerMillionTokens: 25.0 }

// Calculate cost from usage
const cost = calculateCost(usage, pricing);

// Combine usage from multiple calls
const totalUsage = addLanguageModelUsage(usage1, usage2);

// Estimate tokens for text
const tokens = estimateTokens('Hello world');

Model Support

Uses AI Gateway format for model identifiers:

| Provider | Model ID | |----------|----------| | Anthropic | anthropic/claude-opus-4.5, anthropic/claude-sonnet-4 | | OpenAI | openai/gpt-4o, openai/o1, openai/o3-mini | | Google | google/gemini-2.5-pro, google/gemini-2.0-flash | | xAI | xai/grok-3, xai/grok-3-mini | | DeepSeek | deepseek/deepseek-chat, deepseek/deepseek-reasoner |

License

Apache-2.0