ralph-wiggum-mcp
v2.1.1
Published
Enhanced MCP server implementing the Ralph Wiggum technique with history tracking, git integration, and external tools
Maintainers
Readme
Ralph Wiggum MCP Server v2.0
A production-ready Model Context Protocol (MCP) server implementing the Ralph Wiggum technique—iterative AI development loops with history tracking, git integration, and comprehensive analytics.
Overview
Ralph Wiggum MCP Server enables AI agents to continuously improve work through systematic loops. Named after Ralph Wiggum from The Simpsons, it embodies persistent iteration despite setbacks.
New in v2.0:
- Iteration history tracking with progress metrics
- Git integration for automatic change tracking
- External tool integration (test runners, linters, formatters)
- Pre-built loop templates
- Stagnation detection and warnings
- Performance analytics
Features
Core
- Manual iteration control with
ralph_iterate - Completion promises for automatic loop termination
- Max iteration safety limits
- Persistent state across server restarts
Progress Tracking
- Track files modified, commands run, and errors per iteration
- Duration tracking and performance analysis
- Stagnation detection and repeated error warnings
- History reports with convergence metrics
Git Integration
- Automatic commits after each iteration (optional)
- Diff summaries and change tracking
- Context from previous Ralph commits
External Tools
- Run test suites (JavaScript, Python, Rust, Go)
- Execute linters and formatters
- Automatic error extraction and analysis
Templates
REST API, TDD, Refactoring, Bug Fixing, Documentation, Performance Optimization, Security Hardening, Database Migration
Installation
Prerequisites:
- Node.js ≥18.0.0
- npx (comes with npm ≥5.2.0)
- Git (optional, for git integration)
Quick Start (Recommended)
No installation required! Simply use npx:
MCP Client Configuration:
Add to your MCP client config (e.g., claude_desktop_config.json):
{
"mcpServers": {
"ralph-wiggum": {
"command": "npx",
"args": ["ralph-wiggum-mcp"]
}
}
}That's it! The package will be automatically downloaded and run on first use.
Local Development Setup
If you want to develop or contribute:
git clone https://github.com/cbuntingde/ralph-wiggum-mcp.git
cd ralph-wiggum-mcp
npm install
npm run buildThen configure your MCP client to use the local build:
{
"mcpServers": {
"ralph-wiggum": {
"command": "node",
"args": ["C:/path/to/ralph-wiggum-mcp/dist/index.js"]
}
}
}Configuration
| Variable | Default | Description |
|----------|---------|-------------|
| RALPH_MAX_ITERATIONS | 50 | Default maximum iterations |
| RALPH_AUTO_COMMIT | false | Enable auto-commit by default |
| RALPH_HISTORY_LIMIT | 100 | Maximum history entries |
| RALPH_STAGNATION_THRESHOLD | 5 | Iterations before stagnation warning |
Tools Reference
Core Tools
ralph_loop
Start an iterative development loop.
Parameters:
prompt(string, optional*) – Task prompttemplate_id(string, optional) – Pre-built template IDmax_iterations(number, optional) – Max iterations (0 = unlimited)completion_promise(string, optional) – Promise phrase signaling completiongit_enabled(boolean, optional) – Enable git integration (default:true)auto_commit(boolean, optional) – Auto-commit after each iteration (default:false)
*Either prompt or template_id required.
ralph_iterate
Process the next iteration with tracking.
Parameters:
last_output(string, required) – Your last output/responsefiles_modified(array, optional) – Files modifiedcommands_run(array, optional) – Commands executederrors(array, optional) – Errors encounteredrun_tools(array, optional) – External tool presets (e.g.,['javascript-test'])
ralph_cancel
Cancel the active Ralph loop.
ralph_status
Get current status with progress insights.
Returns: iteration number, history summary, stagnation detection, estimated iterations remaining.
History & Reporting
ralph_history
Get detailed iteration history report.
Returns: timestamps, durations, files modified, commands run, errors, git commits, tool results.
Templates
ralph_list_templates
List available templates.
Parameter: category (optional) – Filter by category: api, testing, refactoring, debugging, documentation, performance, security, database
ralph_get_template
Get template details.
Parameter: template_id (required) – Template ID
Returns: full prompt text, suggested settings, recommended tools.
Git Integration
ralph_git_status
Get git status and diff summary.
ralph_git_commit
Create a git commit manually.
Parameter: message (required) – Commit message
ralph_git_context
Get context from recent Ralph commits.
Parameter: count (optional) – Number of commits (default: 5)
External Tools
ralph_run_tools
Run external tool presets.
Parameter: presets (required, array) – Preset names
Available presets:
javascript-test– npm testjavascript-lint– ESLintpython-test– pytestpython-lint– ruffrust-test– cargo testrust-lint– clippygo-test– go testbuild– Verify project builds
ralph_detect_tools
Detect available tool presets for your project.
ralph_list_tools
List all tool presets with descriptions.
Usage Examples
Beginner Example: Building a Simple App
Step 1: Start the loop
Tell your AI to use ralph_loop with:
prompt: "Create a simple to-do list app with Node.js and Express.
Requirements:
- Add, view, delete todos
- Store in memory
- Output <promise>DONE</promise> when complete"Step 2: AI starts working
The AI will create initial files. When it reports what it did, it calls ralph_iterate with:
last_output: "I created server.js with Express and endpoints for todos"
files_modified: ["server.js", "package.json"]Step 3: AI continues iterating
The AI keeps improving the code, calling ralph_iterate each time with updates.
Step 4: Completion
When the AI meets all requirements, it outputs <promise>DONE</promise> and the loop stops.
Step-by-Step Example with Testing
Step 1: Start a development loop
ralph_loop with:
- prompt: "Create a calculator module with add, subtract, multiply, divide functions.
Write tests first. Keep iterating until tests pass.
Output <promise>CALCULATOR_DONE</promise> when complete."
- max_iterations: 20Step 2: AI writes first test
ralph_iterate with:
- last_output: "Created calculator.test.js with test for add() function"
- files_modified: ["calculator.test.js"]Step 3: AI implements function
ralph_iterate with:
- last_output: "Implemented add() function in calculator.js"
- files_modified: ["calculator.js"]
- run_tools: ["javascript-test"]Step 4: Check if tests pass
The run_tools parameter runs npm test. If tests fail, the AI sees the errors and tries again.
Step 5: Repeat until success
The loop continues calling ralph_iterate until all tests pass, then outputs <promise>CALCULATOR_DONE</promise>.
Using Pre-Built Templates
Step 1: See available templates
ralph_list_templatesStep 2: Get a specific template
ralph_get_template with template_id: "rest-api"This shows you the full prompt and recommended settings.
Step 3: Start with the template
ralph_loop with:
- template_id: "rest-api"
- auto_commit: trueThe AI automatically uses the template's prompt and settings.
Tracking Progress During Development
While a loop is running, you can check progress:
ralph_statusThis shows:
- Current iteration number
- Files modified so far
- Errors encountered
- Whether you've been stuck on the same error
ralph_historyShows detailed history of every iteration.
Template-Based Development
Quick start using built-in templates:
ralph_loop with:
- template_id: "rest-api"
- auto_commit: true
Each iteration:
ralph_iterate with:
- last_output: your response
- run_tools: ["javascript-test", "javascript-lint"]TDD with Automatic Testing
ralph_loop with:
- template_id: "tdd"
Each iteration:
ralph_iterate with:
- last_output: your response
- files_modified: ["src/calculator.ts", "src/calculator.test.ts"]
- run_tools: ["javascript-test"]Bug Fixing
ralph_loop with:
- prompt: "Fix authentication bug. Output <promise>BUG_FIXED</promise> when tests pass."
- max_iterations: 15
Track with:
- ralph_status
- ralph_history
- ralph_git_contextBest Practices
1. Clear Completion Criteria
Build a REST API for todos.
Requirements:
- All CRUD endpoints working
- Input validation
- Tests passing (coverage > 80%)
- README with API docs
Output <promise>API_COMPLETE</promise> when done.2. Use External Tools
Implement feature X with tests.
Each iteration:
- ralph_iterate with run_tools: ["javascript-test"]
- Only output <promise>COMPLETE</promise> when tests pass3. Enable Auto-Commit
Refactor codebase with auto_commit: true.
Each successful step is saved automatically.
If broken, revert to last working state.4. Leverage Templates
ralph_list_templates → view available templates
ralph_get_template with template_id: "tdd" → view full prompt
ralph_loop with template_id: "tdd" → start loopPhilosophy
- Iteration > Perfection – Let the loop refine the work
- Failures Are Data – Predictable failures inform prompt tuning
- Operator Skill Matters – Success depends on good prompts
- Persistence Wins – Keep trying until success
- Measurement Improves Outcomes – Track and learn from history
When to Use
Best For:
- Well-defined tasks with clear success criteria
- Tasks requiring iteration and refinement
- Greenfield projects
- Tasks with automatic verification (tests, linters)
- Refactoring with safety nets
Not Recommended For:
- Human judgment or design decisions
- One-shot operations
- Unclear success criteria
- Production debugging (use targeted debugging instead)
Development
| Command | Description |
|---------|-------------|
| npm run build | Compile TypeScript |
| npm run dev | Watch mode |
| npm start | Start server |
| npm test | Run tests |
| npm run test:security | Security tests |
| npm run test:coverage | Coverage tests |
Project Structure:
ralph-wiggum-mcp/
├── src/
│ ├── index.ts # Server entry
│ ├── handlers/ # Tool handlers
│ ├── templates/ # Loop templates
│ └── utils/ # Utilities
├── dist/ # Compiled output
└── package.jsonContributing
Contributions welcome! Report bugs, suggest features, submit pull requests, improve documentation, or add new templates.
Resources
- Original Technique – Geoffrey Huntley
- Ralph Orchestrator
- Claude Code Plugin – Anthropic
- Model Context Protocol – Specification
License
MIT License
