npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

react-native-pixel-data

v1.0.1

Published

High-performance React Native SDK for extracting raw pixel data from images for ML inference

Downloads

181

Readme

react-native-pixel-data

A high-performance React Native SDK for extracting raw pixel data from images and preparing it for machine learning inference. Native implementations in Swift (iOS) and Kotlin (Android) ensure optimal performance.

npm version npm downloads license platforms TypeScript

Features

  • 🖼️ Multiple Image Sources: URL, local file, base64, app assets, photo library
  • 🎨 Color Formats: RGB, RGBA, BGR, BGRA, Grayscale
  • 📐 Smart Resizing: Cover, contain, and stretch strategies
  • 🔢 Normalization Presets: ImageNet, TensorFlow, scale (0-1), raw, custom
  • 📊 Data Layouts: HWC, CHW, NHWC, NCHW (for ML framework compatibility)
  • ✂️ ROI Extraction: Crop specific regions before processing
  • Batch Processing: Process multiple images with concurrency control
  • 📱 Native Performance: Swift (iOS) and Kotlin (Android) implementations

Installation

npm install react-native-pixel-data
# or
yarn add react-native-pixel-data

iOS

cd ios && pod install

Android

No additional setup required - auto-linking handles everything.

Quick Start

import { getPixelData } from 'react-native-pixel-data';

// Basic usage - get RGB pixel data from a URL
const result = await getPixelData({
  source: { type: 'url', value: 'https://example.com/image.jpg' },
  resize: { width: 224, height: 224 },
});

console.log('Pixel data:', result.data); // Float array of normalized RGB values
console.log('Dimensions:', result.width, result.height, result.channels);

API Reference

getPixelData(options)

Extracts pixel data from a single image.

const result = await getPixelData({
  source: ImageSource;           // Required: Image source
  colorFormat?: ColorFormat;     // Default: 'RGB'
  resize?: ResizeOptions;        // Optional: Resize dimensions
  roi?: Roi;                     // Optional: Region of interest
  normalization?: Normalization; // Default: { preset: 'scale' }
  dataLayout?: DataLayout;       // Default: 'HWC'
  outputFormat?: OutputFormat;   // Default: 'array'
});

batchGetPixelData(optionsArray, batchOptions?)

Processes multiple images with concurrency control.

const results = await batchGetPixelData(
  [
    { source: { type: 'url', value: 'https://example.com/image1.jpg' } },
    { source: { type: 'url', value: 'https://example.com/image2.jpg' } },
  ],
  { concurrency: 4 }
);

Image Sources

URL

{ type: 'url', value: 'https://example.com/image.jpg' }

Local File

{ type: 'file', value: '/path/to/image.png' }
// or with file:// prefix
{ type: 'file', value: 'file:///path/to/image.png' }

Base64

{ type: 'base64', value: '...' }
// or without data URI prefix
{ type: 'base64', value: 'iVBORw0KGgo...' }

App Asset

{ type: 'asset', value: 'images/sample.png' }

Photo Library (iOS Photos / Android Content URI)

// iOS
{ type: 'photoLibrary', value: 'ph://ASSET-LOCAL-IDENTIFIER' }
// Android
{ type: 'photoLibrary', value: 'content://media/external/images/media/123' }

Color Formats

| Format | Channels | Description | |--------|----------|-------------| | RGB | 3 | Red, Green, Blue | | RGBA | 4 | Red, Green, Blue, Alpha | | BGR | 3 | Blue, Green, Red (OpenCV style) | | BGRA | 4 | Blue, Green, Red, Alpha | | GRAYSCALE | 1 | Luminance (ITU-R BT.601) |

Resize Strategies

resize: {
  width: 224,
  height: 224,
  strategy: 'cover' | 'contain' | 'stretch'
}

| Strategy | Description | |----------|-------------| | cover | Fill target dimensions, crop excess (default) | | contain | Fit within dimensions, letterbox with black | | stretch | Stretch to exact dimensions |

Normalization Presets

Scale (Default)

Scales pixel values to [0, 1] range.

normalization: { preset: 'scale' }
// Result: pixel / 255

ImageNet

Standard ImageNet normalization for PyTorch models.

normalization: { preset: 'imagenet' }
// Result: (pixel/255 - mean) / std
// mean: [0.485, 0.456, 0.406]
// std: [0.229, 0.224, 0.225]

TensorFlow

Scales to [-1, 1] range for TensorFlow models.

normalization: { preset: 'tensorflow' }
// Result: (pixel - 127.5) / 127.5

Raw

No normalization - returns raw 0-255 values.

normalization: { preset: 'raw' }

Custom

Define your own mean and standard deviation.

normalization: {
  preset: 'custom',
  mean: [0.5, 0.5, 0.5],
  std: [0.5, 0.5, 0.5]
}

Data Layouts

| Layout | Description | Use Case | |--------|-------------|----------| | HWC | Height × Width × Channels | General purpose (default) | | CHW | Channels × Height × Width | PyTorch | | NHWC | Batch × H × W × C | TensorFlow | | NCHW | Batch × C × H × W | PyTorch batched |

PyTorch Example

const result = await getPixelData({
  source: { type: 'url', value: imageUrl },
  resize: { width: 224, height: 224, strategy: 'cover' },
  normalization: { preset: 'imagenet' },
  dataLayout: 'CHW', // PyTorch format
});

// result.data shape: [3, 224, 224] (flattened)

TensorFlow Example

const result = await getPixelData({
  source: { type: 'url', value: imageUrl },
  resize: { width: 224, height: 224, strategy: 'cover' },
  normalization: { preset: 'tensorflow' },
  dataLayout: 'NHWC', // TensorFlow format
});

// result.data shape: [1, 224, 224, 3] (flattened)

Output Formats

Control the type of array returned for pixel data:

| Format | Description | |--------|-------------| | array | Standard JavaScript number array (default) | | float32Array | Float32Array for better memory efficiency | | uint8Array | Uint8Array for raw 0-255 values |

// Default: JavaScript array
const result = await getPixelData({
  source: { type: 'url', value: imageUrl },
  outputFormat: 'array', // number[]
});

// Float32Array for ML frameworks
const result = await getPixelData({
  source: { type: 'url', value: imageUrl },
  outputFormat: 'float32Array', // Float32Array
});

// Uint8Array for raw pixel values
const result = await getPixelData({
  source: { type: 'url', value: imageUrl },
  normalization: { preset: 'raw' },
  outputFormat: 'uint8Array', // Uint8Array
});

Region of Interest (ROI)

Extract a specific region before resizing:

const result = await getPixelData({
  source: { type: 'url', value: imageUrl },
  roi: {
    x: 100,      // Left offset
    y: 50,       // Top offset
    width: 200,  // Region width
    height: 200  // Region height
  },
  resize: { width: 224, height: 224 }
});

Batch Processing

Process multiple images efficiently:

import { batchGetPixelData, isPixelDataError } from 'react-native-pixel-data';

const images = [
  'https://example.com/image1.jpg',
  'https://example.com/image2.jpg',
  'https://example.com/image3.jpg',
];

const batchResult = await batchGetPixelData(
  images.map(url => ({
    source: { type: 'url', value: url },
    resize: { width: 224, height: 224 },
    normalization: { preset: 'imagenet' },
    dataLayout: 'CHW',
  })),
  { concurrency: 4 } // Process 4 images in parallel
);

console.log(`Processed ${batchResult.results.length} images`);
console.log(`Total time: ${batchResult.totalTimeMs}ms`);

// Check for errors in individual results using type guard
batchResult.results.forEach((result, index) => {
  if (isPixelDataError(result)) {
    console.error(`Image ${index} failed:`, result.code, result.message);
  } else {
    console.log(`Image ${index}: ${result.width}x${result.height}`);
  }
});

Error Handling

import { getPixelData, PixelDataException } from 'react-native-pixel-data';

try {
  const result = await getPixelData({
    source: { type: 'url', value: 'https://invalid-url.com/image.jpg' }
  });
} catch (error) {
  if (error instanceof PixelDataException) {
    console.error('Code:', error.code);    // e.g., 'LOAD_ERROR'
    console.error('Message:', error.message);
  }
}

Error Codes

| Code | Description | |------|-------------| | INVALID_SOURCE | Invalid image source configuration | | LOAD_ERROR | Failed to load image from source | | FILE_NOT_FOUND | Local file does not exist | | PERMISSION_DENIED | Missing permissions for photo library | | PROCESSING_ERROR | Error during pixel processing | | INVALID_RESIZE | Invalid resize dimensions or strategy | | INVALID_ROI | Invalid region of interest parameters | | INVALID_NORMALIZATION | Invalid normalization configuration | | UNKNOWN | Unknown or unexpected error |

TypeScript Types

All types are fully exported:

import type {
  ImageSource,
  ColorFormat,
  ResizeOptions,
  ResizeStrategy,
  Roi,
  Normalization,
  NormalizationPreset,
  DataLayout,
  OutputFormat,
  GetPixelDataOptions,
  PixelDataResult,
  BatchOptions,
  BatchResult,
  PixelDataError,
  PixelDataErrorResult,
} from 'react-native-pixel-data';

// Type guard for error checking
import { isPixelDataError, getChannelCount } from 'react-native-pixel-data';

// Utility: Get channel count for a color format
getChannelCount('RGB');       // Returns 3
getChannelCount('RGBA');      // Returns 4
getChannelCount('GRAYSCALE'); // Returns 1

Result Object

interface PixelDataResult {
  data: number[];        // Pixel values (normalized)
  width: number;         // Output width
  height: number;        // Output height
  channels: number;      // Number of channels (1, 3, or 4)
  dataLayout: DataLayout; // Layout used
  shape?: number[];      // Array dimensions based on layout (e.g., [224, 224, 3] for HWC)
  processingTimeMs: number; // Processing time in milliseconds
}

Batch Error Object

When batch processing fails for individual images:

interface PixelDataError {
  error: true;           // Always true for errors
  code: string;          // Error code (e.g., 'LOAD_ERROR')
  message: string;       // Human-readable error message
  index: number;         // Index of failed image in batch (0-based)
}

Performance Tips

  1. Use appropriate resize dimensions: Smaller images process faster
  2. Batch similar operations: Use batchGetPixelData for multiple images
  3. Choose the right concurrency: Too high can cause memory pressure
  4. Use ROI for large images: Extract only what you need
  5. Cache results: Store processed data if you'll reuse it

Requirements

  • React Native >= 0.72
  • iOS 13.0+
  • Android API 21+

License

MIT © Manish Kumar

Contributing

Contributions are welcome! Please read our Contributing Guide and Code of Conduct before submitting pull requests.

Support