ruvector-math-wasm
v0.1.32
Published
WebAssembly bindings for ruvector-math: Optimal Transport, Information Geometry, Product Manifolds
Maintainers
Readme
ruvector-math-wasm
High-performance WebAssembly bindings for advanced mathematical algorithms in vector search and AI.
Brings Optimal Transport, Information Geometry, and Product Manifolds to the browser with near-native performance.
Features
- 🚀 Optimal Transport - Sliced Wasserstein, Sinkhorn, Gromov-Wasserstein distances
- 📐 Information Geometry - Fisher Information Matrix, Natural Gradient, K-FAC
- 🌐 Product Manifolds - E^n × H^n × S^n (Euclidean, Hyperbolic, Spherical)
- ⚡ SIMD Optimized - Vectorized operations where available
- 🔒 Type-Safe - Full TypeScript definitions included
- 📦 Zero Dependencies - Pure Rust compiled to WASM
Installation
npm install ruvector-math-wasm
# or
yarn add ruvector-math-wasm
# or
pnpm add ruvector-math-wasmQuick Start
Browser (ES Modules)
import init, {
WasmSlicedWasserstein,
WasmSinkhorn,
WasmProductManifold
} from 'ruvector-math-wasm';
// Initialize WASM module
await init();
// Compute Sliced Wasserstein distance
const sw = new WasmSlicedWasserstein(100); // 100 projections
const source = new Float64Array([0, 0, 1, 1, 2, 2]); // 3 points in 2D
const target = new Float64Array([0.5, 0.5, 1.5, 1.5, 2.5, 2.5]);
const distance = sw.distance(source, target, 2);
console.log(`Wasserstein distance: ${distance}`);Node.js
const { WasmSlicedWasserstein } = require('ruvector-math-wasm');
const sw = new WasmSlicedWasserstein(100);
const dist = sw.distance(source, target, 2);Use Cases
1. Distribution Comparison in ML
Compare probability distributions for generative models, anomaly detection, or data drift monitoring.
// Compare embedding distributions
const sw = new WasmSlicedWasserstein(200).withPower(2); // W2 distance
const trainEmbeddings = new Float64Array(/* ... */);
const testEmbeddings = new Float64Array(/* ... */);
const drift = sw.distance(trainEmbeddings, testEmbeddings, 768);
if (drift > threshold) {
console.warn('Data drift detected!');
}2. Semantic Vector Search
Use product manifolds for hierarchical and semantic search.
const manifold = new WasmProductManifold({
euclidean_dim: 256,
hyperbolic_dim: 128,
spherical_dim: 128,
curvature_h: -1.0,
curvature_s: 1.0
});
// Compute distance in mixed-curvature space
const dist = manifold.distance(queryVector, documentVector);3. Optimal Transport for Image Comparison
const sinkhorn = new WasmSinkhorn(0.01, 100); // regularization, max_iters
// Compare image histograms
const result = sinkhorn.solveTransport(
costMatrix,
sourceWeights,
targetWeights,
n, m
);
console.log(`Transport cost: ${result.cost}`);
console.log(`Converged: ${result.converged}`);4. Natural Gradient Optimization
const fisher = new WasmFisherInformation(512);
// Compute Fisher Information Matrix
const fim = fisher.compute(activations);
// Apply natural gradient
const naturalGrad = fisher.naturalGradientStep(gradient, 0.01);API Reference
Optimal Transport
| Class | Description |
|-------|-------------|
| WasmSlicedWasserstein | Fast approximation via random projections |
| WasmSinkhorn | Entropy-regularized optimal transport |
| WasmGromovWasserstein | Cross-space structural comparison |
Information Geometry
| Class | Description |
|-------|-------------|
| WasmFisherInformation | Fisher Information Matrix computation |
| WasmNaturalGradient | Natural gradient descent optimizer |
Product Manifolds
| Class | Description |
|-------|-------------|
| WasmProductManifold | E^n × H^n × S^n mixed-curvature space |
| WasmSphericalSpace | Spherical geometry operations |
Performance
Benchmarked on M1 MacBook Pro (WASM in Chrome):
| Operation | Dimension | Time | |-----------|-----------|------| | Sliced Wasserstein (100 proj) | 1000 points × 128D | 2.3ms | | Sinkhorn (100 iter) | 500 × 500 | 8.7ms | | Product Manifold distance | 512D | 0.04ms |
TypeScript Support
Full TypeScript definitions are included:
import { WasmSlicedWasserstein, WasmSinkhornConfig } from 'ruvector-math-wasm';
const sw: WasmSlicedWasserstein = new WasmSlicedWasserstein(100);
const distance: number = sw.distance(source, target, dim);Building from Source
# Install wasm-pack
curl https://rustwasm.github.io/wasm-pack/installer/init.sh -sSf | sh
# Build
cd crates/ruvector-math-wasm
wasm-pack build --target web --release
# Test
wasm-pack test --headless --chromeRelated Packages
ruvector-math- Rust crate (native)@ruvector/attention- Attention mechanisms (native Node.js)@ruvector/attention-wasm- Attention mechanisms (WASM)
License
MIT OR Apache-2.0
