scikit-learn
v0.1.0
Published
Node.js wrapper of scikit-learn
Downloads
301
Maintainers
Readme
scikit-learn
Node.js wrapper of scikit-learn
Installation
npm install scikit-learn
Usage
var scikit = require('scikit-learn')
Example
var inspect = require('inspect-stream');
var arrayify = require('arrayify-merge.s');
var slice = require('slice-flow.s');
var scikit = require('scikit-learn');
var features = scikit.dataset('load_digits.data'); //stream of features
var labels = scikit.dataset('load_digits.target'); //stream of labels
// arrayify is transform stream that turns two input streams
// into one stream by wraping packets of inputs in array.
// So trainingSet outputs arrays [<feature>, <label>]
var trainingSet = arrayify();
features.pipe(trainingSet);
labels.pipe(trainingSet);
var clf = scikit.svm('SVC', {
gamma: 0.001,
C: 100
});
trainingSet
.pipe(slice([0, -1])) //passes all packets except last one
.pipe(clf)
.on('error', function (err) {
console.log(err);
})
.on('end', function () {
// now we have trained model
var predict = clf.predict();
var features = scikit.dataset('load_digits.data');
features.pipe(slice(-1)) //passes only last packet
.pipe(predict)
.pipe(inspect());
});
API
scikit.dataset(name, options)
- name
String
Name of method ofsklearn.datasets
on python side concatenated by dot with name of dataset's subset Ex: 'load_digits.target' - options
Object
Options of method
Returns readable stream of dataset
Fit streams
All fit streams are transform streams that acts like writable.
So you must listen on end
event instead of finish
to be sure that training finished
Accepts flow of arrays like [features, label] where 'features' is array of features and label is... label
Also fit stream have event 'model' that emits with trained model.
Model is Buffer
containing pickled object
Fit stream have method predict
that returns Predict stream
scikit.svm(name, options)
- name
String
Name of method ofsklearn.svm
- options
Object
Options for estimator
Predict streams
Predict stream is transform stream that accepts flow of arrays of features and outputs predictions